It is currently Thu Apr 09, 2020 3:09 pm

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

Фотометрия / спектрофотометрия

Подборка научных статей

by Admin » Wed Aug 07, 2019 3:11 pm


В данном разделе будут выкладываться научные статьи, посвященные спектрофотометрическому методу анализа, а также новым приборам и разработкам для спектрофотометрии.
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Wed Aug 07, 2019 3:37 pm


Abstract: Разработан прибор для измерения спектров отражения. Прибор построен на основе микроконтроллера ATtiny24, оснащенного шестью светодиодами с длинами волн 390, 470, 520, 565, 590, 655 нм и однокристальным фотоприемником OPT-101. Микроконтроллер последовательно зажигает и гасит светодиоды, измеряя отраженный сигнал от образца. Калибровка прибора (100% отражения) производится по листу белой бумаги.

Main Figures:
Image
Прибор для измерения спектров отражения

Image


OPT101 Monolithic Photodiode and Single-Supply Transimpedance Amplifier

References
[1] Бураков В. С. Практическое руководство по спектральному
анализу / В. С. Бураков, А. А. Янковский. – Минск. :АН БССР, 1960. – 236.
[2] Дробышев А. И. Основы атомного спектрального анализа / А. И.
Дробышев. – С.-Петерб. Ун-та, 2000. - 198с.
[3] Зайдель А. Н. Основы спектрального анализа / А. Н. Зайдель. –
М. : Наука, 1965. – 322 с.
[4] Зайдель А. Н. Таблицы спектральных линий / А. Н. Зайдель, В. К.
Прокофьев, С. М. Райский, Е. Я. Шрейдер. – М. :Физматлит, 1962. – 607 с.
[5] Ландсберг Г. С. Оптика, 6-е изд., стереот. / Г. С. Ландсберг. – М. :
Физматлит, 2003. – 848 с.
[6] Лебедева В. В. Техника оптической спектроскопии / В. В.
Лебедева. – М. : изд-во МГУ, 1977. – 372 с.
[7] Митричев В. С. Основы криминалистического исследования
материалов, веществ и изделий из них / В. С. Митричев, В. Н. Хрусталев. –
СПб. : Питер, 2003. – 591 с.
[8] Паспорт СЛ – 13: паспорт
[9] Пономарев А. Н. Химический и спектральный анализ в
металлургии / А. Н. Пономарев. – М. : «Наука», 1965. – 383 с.
[10] Свентицкий Н. С. Визуальные методы спектрального анализа / Н.
С. Светницкий. – М. : 1961. – 314 с.
[11] Сухенко К. А. Спектральный анализ сталей и сплавов / К. А.
Сухенко – М. : Оборонгиз, 1954.
[12] Тарасов К. И. Спектральные приборы / К. И. Тарасов. – Л.:
Машиностроение, 1968. – 388 с.
[13] Терек Т. Эмиссионный спектральный анализ / Т. Терек, Й. Мика,
Э. Гегуш. – М. : Мир, 1982. – 455 с.
[14] Методы атомно-эмиссионной спектроскопии [электронный
ресурс] URL:http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/03_ana
liticheskaya_khimiya_chast_II/5030 (дата обращения 11.02.2017)
[15] Медицинская энциклопедия [электронный ресурс]:
http://www.medical-enc.ru/ (дата обращения 10.05.17)
[16] В. Шеленберг Принципы работы и устройство приемников света
на ПЗС [электронный ресурс] URL: http://www.startcopy.net/notes/ccd.shtml
(дата обращения 18.04.2017)
[17] О. Шенцова сравнительный спектральный анализ в
криминалистической экспертизе на стилоскопе сл-13 с фотоэлектрической
приставкой [электронный ресурс]
http://www.proexpertizu.ru/general_questions/661/ ( дата обращения 17.02.2017)
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Aug 08, 2019 4:22 pm

2. Junjie Ma , Fansheng Meng , Yuexi Zhou Yeyao Wang, Ping Shi. DistributedWater Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks // Sensors 2018, 18, 606.

Abstract: Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.


Main Figures:
Image
Image
Image
Image


References
1. Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution
sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.
Sci. Total Environ. 2016, 566, 1552–1567. [CrossRef] [PubMed]
2. Zhao, Y.; Xia, X.H.; Yang, Z.F. Assessment of water quality in Baiyangdian Lake using multivariate statistical
techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [CrossRef]
3. Kim, C.; Eom, J.B.; Jung, S.; Ji, T. Detection of organic compounds in water by an optical absorbance method.
Sensors 2016, 16, 61. [CrossRef] [PubMed]
4. Xu, L.; Luo, Y. A new technology for water quality monitoring based on UV-visible spectrum analysis.
Spectrosc. Spectr. Anal. 2014, 34, 443–444.
5. Cao, H.; Qu, W.; Yang, X.; Jia, S.; Wang, C.; Lu, C. Research on rapid determination of organic matter
concentration in aquaculture water based on UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3015–3019.
6. Kus, M.; Ribbens, S.; Meynen, V.; Cool, P. Microvolume TOC analysis as useful tool in the evaluation of lab
scale photocatalytic processes. Catalysts 2013, 3, 74–87. [CrossRef]
7. Zhao, Y.; Li, Y.; Zhen, Y.; Fang, Y. A novel monitoring system for COD using optical ultraviolet absorption
method. Procedia Environ. Sci. 2011, 10, 2348–2353.
8. Tang, B.; Zhao, J.;Wei, B.; Jiang, S.; Luo, J. A method of optimizing the prediction model for the determination
of water COD by using UV-visible spectroscopy. China Environ. Sci. 2015, 35, 478–483.
9. Tang, B.; Wei, B.; Wu, D.; Mi, D.; Zhao, J.; Feng, P.; Jiang, S.; Mao, B. Experimental research of turbidity
influence on water quality monitoring of COD in UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3020–3024.
10. Wu, D.;Wei, B.; Feng, P.; Tang, B.; Liu, J. Denoising algorithm of UV-visible spectroscopy on water quality
detection based on two-dimension restructuring and dynamic pane. Spectrosc. Spectr. Anal. 2016, 36,
1044–1050.
11. Tang, B.;Wei, B.; Mao, B.; Zhao, J.; Feng, P. Noise analysis and denoising research on the UV-visible absorption
spectroscopy water quality detection system. Laser Optoelectron. Prog. 2014, 51, 197–203. [CrossRef]
12. Tang, G.; Wei, B.; Wu, D.; Feng, P.; He, P.; Liu, J.; Chen, M. Research on compression and reconstruction
algorithm of spectral data in water quality monitoring. Environ. Sci. Technol. 2016, 39, 6–10.
13. Wang, X.; Ma, J.;Wang, S.; Bi, D. Cluster-based dynamic energy management for collaborative target tracking
in wireless sensor networks. Sensors 2007, 7, 1193–1215. [CrossRef]
14. Wang, X.; Ma, J.; Wang, S. Parallel energy-efficient coverage optimization with maximum entropy clustering
in wireless sensor networks. J. Parallel Distrib. Comput. 2009, 69, 838–847. [CrossRef]
15. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantitative online analysis of
environmental trace heavy metals with total-reflection X-ray fluorescence. Sensors 2015, 15, 10650–10675.
[CrossRef] [PubMed]
16. Hou, D.; Zhang, J.; Chen, L.; Huang, P.; Zhang, G. Water quality analysis by UV-visible spectroscopy:
A review of methodology and application. Spectrosc. Spectr. Anal. 2013, 33, 1839–1844.
17. Zhao, Y.; Li, Y.; Guo, Y.; Gu, B.; Yang, Z. A novel technology for water quality testing based on UV spectral
analysis. Spectrosc. Spectr. Anal. 2012, 32, 1301–1305.
18. Liu, X.; Zhang, H. Rapid determination of COD in aquaculture water based on LSSVM with UV-visible
spectroscopy. Spectrosc. Spectr. Anal. 2014, 34, 2804–2807.
19. Wang, X.;Wang, S.; Ma, J. An improved particle filter for target tracking in sensor systems. Sensors 2007, 7,
144–156. [CrossRef]
Sensors 2018, 18, 606 19 of 19
20. Wang, X.; Ma, J.; Ding, L.; Bi, D. Robust forecasting for energy efficiency of wireless multimedia sensor
networks. Sensors 2007, 7, 2779–2807. [CrossRef] [PubMed]
21. Wang, X.; Ma, J.; Wang, S.; Bi, D. Time series forecasting energy-efficient organization of wireless sensor
networks. Sensors 2007, 7, 1766–1792. [CrossRef] [PubMed]
22. Taormina, R.; Chau, K.W.; Sivakumar, B. Neural network river forecasting through baseflow separation and
binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [CrossRef]
23. Gholami, V.; Chau, K.W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations
using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [CrossRef]
24. Wang,W.C.; Xu, D.M.; Chau, K.W.; Chen, S. Improved annual rainfall-runoff forecasting using PSO–SVM
model based on EEMD. J. Hydroinform. 2013, 15, 1377–1390. [CrossRef]
25. Zhang, S.; Chau, K.W. Dimension reduction using semi-supervised locally linear embedding for plant leaf
classification. In Emerging Intelligent Computing Technology and Applications; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 948–955.
26. Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks
coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [CrossRef]
27. Chau, K.W.; Wu, C.L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction.
J. Hydroinform. 2010, 12, 458–473. [CrossRef]
28. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantification of environmental trace
elements with total reflection X-ray fluorescence. In Proceedings of the IEEE 15th International Conference
on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015; pp. 1580–1586.
29. Wang, X.; Ma, J.; Wang, S.; Bi, D. Distributed particle swarm optimization and simulated annealing for
energy-efficient coverage in wireless sensor networks. Sensors 2007, 7, 628–648. [CrossRef]
30. Wang, X.; Ma, J.;Wang, S. Distributed energy optimization for target tracking in wireless sensor networks.
IEEE Trans. Mobile Comput. 2009, 9, 73–86. [CrossRef]
31. Wang, C.; Wu, F.; Zhao, H.; Lu, S. Temporal information entropy and its application in the detection of
spatio-temporal changes in vegetation coverage based on remote sensing images. Acta Ecol. Sin. 2017, 37,
7359–7367.
32. Al-Omari, A.I. Estimation of entropy using random sampling. J. Comput. Appl. Math. 2014, 261, 95–102.
[CrossRef]
33. Yentes, J.M.; Hunt, N.; Schmid, K.K. The appropriate use of approximate entropy and sample entropy with
short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [CrossRef] [PubMed]
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Aug 27, 2019 11:08 am


Abstract: A spectrophotometer is the basic measuring equipment essential to most research activity fields requiring samples to be measured, such as physics, biotechnology and food engineering. This paper proposes a system that is able to detect sample concentration and color information by using LED and color sensor. Purity and wavelength information can be detected by CIE diagram, and the concentration can be estimated with purity information. This method is more economical and efficient than existing spectrophotometry, and can also be used by ordinary persons. This contribution is applicable to a number of fields because it can be used as a colorimeter to detect the wavelength and purity of samples.

Main Figures:
Image
Image
Image


References
[1] S. Nishino and K. Ohshima, A feasibility study of gender recognition with a near infrared ray scanning
spectrophotometer, Electronics and Communications in Japan 94 (2011), 59-68.
[2] A.K. Gaigalas, L. Wang, V. Karpiak, Y.Z. Zhang and S. Choquette, Measurement of scattering cross section with a
spectrophotometer with an integrating sphere detector, Journal of Research of the National Institute of Standards and
Technology 117 (2012), 202-215.
[3] K.S. Johnson, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, D.D. Swift and S.C. Riser, Long-term nitrate measurements
in the ocean using the in situ ultraviolet spectrophotometer: Sensor integration into the APEX profiling float, Journal of
Atmospheric and Oceanic Technology 30 (2013), 1854-1866.
[4] A. Penzkofer, Optical rotatory dispersion measurement of D-glucose with fixed polarizer analyzer accessory in
conventional spectrophotometer, Journal of Analytical Sciences, Method and Instrumentations 3 (2013), 234-239.
[5] K.Y. Khan, M.A. Khan, R. Niamat, M. Munir, H. Fazal, P. Mazari, N. Seema, T. Bashir, A. Kanwal and S. N. Ahmed,
Element content analysis of plants of genus ficus using atomic absorption spectrometer, African Journal of Pharmacy
and Pharmacology 5 (2011), 317-321.
[6] A. Burkart, S. Cogliati, A. Schickling and U. Rascher, A novel UAV-based ultra-light weight spectrometer for field
spectroscopy, Sensors Journal, Institute of Electrical and Electronics Engineers 14 (2014), 62-67.
[7] F. Antonucci, F. Pallottino, G. Paglia, A. Palma, S. D'Aquino and P. Menesatti, Non-destructive estimation of mandarin
maturity status through portable VIS-NIR spectrophotometer, Food and Bioprocess Technology 4 (2011), 809-813.
[8] T. Atomssa and A.V. Gholap, Characterization of caffeine and determination of caffeine in tea leaves using Uv-visible
spectrometer, African Journal of Pure and Applied Chemistry 5 (2011), 1-8.
[9] T. Makino and H. Wakabayashi, New spectrophotometer system for measuring thermal radiation characteristics of real
surfaces of thermal engineering entirely, Journal of Thermal Science and Technology 6 (2011), 80-92.
[10] Y. Yagiz, M.O. Balaban, H.G. Kristinsson, B.A. Welt and M.R. Marshall, Comparison of minolta colorimeter and
machine vision system in measuring colour of irradiated Atlantic salmon, Journal of the Science of Food and
Agriculture 89 (2009), 728-730.
[11] M. Xu, D.J. McCanna and J.G. Sivak, Use of the viability reagent PrestoBlue in comparison with alamar blue and MTT
to access the viability of human corneal epithelial cells, Journal of Pharmacological and Toxicological Methods 71
(2015), 1-7.
[12] S. Kolusheva, L. Boyer and R. Jelinek, A colorimetric assay for rapid screening of antimicrobial peptides, Nature
Biotechnology 18 (2000), 225-227.
[13] N. Abdullah, H.A. Aziz, N.N.A.N. Yusuf, M. Umar and S.S.A. Amr, Potential of KMnO4 and H2O2 in treating semiaerobic
landfill leachate, Applied Water Science 4 (2014), 303-309.
[14] A. Carabet, C. Florescu, C. Staniloju, C. Podoleanu, M. Visescu, M. Belu and C. Ilie, The efficiency of resita town
water treatment plant, Revista de Chimie 64 (2013), 559-563.
[15] P. Kassal, R. Surina, D. Vrsaljko and I.M. Steinberg, Hydro sol-gel thin films doped with a pH indicator: Effect of
organic modification on optical Ph response and film surface hydrophilicity, Journal of Sol-Gel Science and
Technology 69 (2014), 586-595.
[16] M. Masrie, B.Y. Majlis and J. Yunas, Fabrication of multilayer-PDMS based microfluidic device for bio-particles
concentration detection, Bio-Medical Materials and Engineering 24 (2014), 1951-1958.
[17] X. Gan, N. Pervez, I. Kymissis, F. Hatami and D. Englund, A high-resolution spectrometer based on a compact planar
two dimensional photonic crystal cavity array, Applied Physics Letters 100 (2012), 231104.
[18] D.V. Spracklen, J.L. Jimenez, K.S. Carslaw, D.R. Worsnop, M.J. Evans, G.W. Mann, Q. Zhang, M.R. Canagaratna, J.
Allan, H. Coe, G. McFiggans, A. Rap and P. Forster, Aerosol mass spectrometer constraint on the global secondary
organic aerosol budget, Atmospheric Chemistry and Physics 11 (2011), 12109-12136.
[19] A. Wego, Accuracy simulation of an LED based spectrophotometer, Optik-International Journal for Light and Electron
Optics 124 (2013), 644-649.
[20] T. Bano, G. Yadav and R. DuDudhe, Development and validation of oseltamivir phosphate API by UV-spectrophotometer,
Global Journal of Pharmacology 7 (2013), 294-297.
[21] C. Gomez-Polo, M. Gomez-Polo, A. Celemin-Vinuela and J.A.M.V. De Parga, Differences between the human eye and
the spectrophotometer in the shade matching of tooth color, Journal of Dentistry 42 (2014), 742-745.
[22] T. Coin, S. Lee and S. Chin, Method of combining spectrophotometer and optical imaging equipment to extract optical
parameters for material rendering, Journal of Sensors 2014 (2014), 1-8.
[23] L. Zhang, H. Kong, C.T. Chin, T. Wang and S. Chen, Cytoplasm segmentation on cervical cell images using graph cutbased
approach, Bio-Medical Materials and Engineering 24 (2014), 1125-1131.
[24] X. Wang, Uniformity research on CIE 1931 chromaticity diagram, Commission Internationale de l'Eclairage 178 (2008),
1-84.
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Aug 29, 2019 4:10 pm

4. Спектр видимого излучения в компьютерной графике.

Abstract: Одним из основных режимов представления цвета в компьютерной графике является режим RGB — смесь красного, зеленого и синего. Чтобы задать какой либо цвет необходимо присвоить трем переменным R, G, B значения от 0 до 255. Таким образом, можно получить цвет любого оттенка, любой яркости.

Main Figures:
Представление некоторых цветов в режиме RGB
Image

Видимый свет представляет собой э/м волну с интервалом длин волн: 380-760 нм.
В статье мы будем использовать представление света с помощью длины волны.
Из физических наблюдений известно, что красный цвет лежит в интервале длин волн (610;760), оранжевый — (590;610), желтый — (570;590), зеленый — (540;570), голубой — (510;540), синий — (480;510), фиолетовый — (380;480) нм.

Если посмотреть на сплошной спектр видимого излучения, то на нем можно выделить определенные цвета, между которыми существует плавный переход:
Image[/img]

Рассмотрим перевод длины волны в RGB для зеленого цвета. Мы знаем, что зеленый цвет лежит в интервале (540;570). Предположим истинный зеленый цвет приходится на длину волны, лежащую в центре данного интервала: 555 нм. Поэтому при данной длине волны в режиме RGB он будет выглядеть так (0,255,0). При увеличении длины волны зеленый цвет плавно переходит в желтый (255,255,0). На границе этих двух цветов т.е. примерно при длине волны в 570 нм RGB представление будет иметь вид (127,255,0). Для этого интервала можно записать формулы перехода от длины волны к количеству красного, зеленого, синего в режиме RGB.
Анализируя границы указанного интервала длин волн можно заметить, что в нем не присутствует синяя составляющая, поэтому можно сразу записать: B=0. Также видно, что не изменяется зеленая составляющая G=255. А вот для красной составляющей запишем R=[127.5*(lamda-555)/(570-555)], где [] — операция извлечения целой части. Выражение не упрощено для сохранения смысла построения зависимости.
При попадании длины волны в интервал (540,555) зеленый цвет плавно переходит в голубой.
На левой границе этого интервала цвет в режиме RGB имеет вид: (0,255,127). Сравнивая левую(0,255,127) и правую(0,255,0) границу интервала, имеем R=0, G=255
А количество синей составляющей (B) уменьшается от 127 до 0. Переход можно осуществить по следующей формуле: R=[127.5*(1-(lamda-540)/(555-540))]
Используя вышеописанный принцип можно получить формулы перехода для всех интервалов спектра, и реализовать их в виде функций для каждой составляющей.

Реализация:
Code: Select all
01 function Red(l:integer):byte;
02 var n:byte;
03 begin
04 if (l>560)and(l<=760) then n:=255;
05 if (l>495)and(l<=555) then n:=0;
06 if (l>570)and(l<=580) then n:=round(127.5+127.5*(l-570)/10);
07 if (l>555)and(l<=570) then n:=round(127.5*(l-555)/15);
08 if (l>480)and(l<=495) then n:=round(127.5-127.5*(l-480)/15);
09 if (l>380)and(l<=480) then n:=round(255-127.5*(l-380)/100);
10 Red:=n;
11 end;
12 
13 function Blue(l:integer):byte;
14 var n:byte;
15 begin
16 if (l>380)and(l<=525) then n:=255;
17 if (l>555)and(l<=760) then n:=0;
18 if (l>540)and(l<=555) then n:=round(127.5-127.5*(l-540)/15);
19 if (l>525)and(l<=540) then n:=round(255-127.5*(l-525)/15);
20 Blue:=n;
21 end;
22 
23 function Green(l:integer):byte;
24 var n:byte;
25 begin
26 if (l>525)and(l<=580) then n:=255;
27 if (l>380)and(l<=495) then n:=0;
28 if (l>610)and(l<=760) then n:=round(63.5-63.5*(l-610)/150);
29 if (l>600)and(l<=610) then n:=round(127.5-63.5*(l-600)/10);
30 if (l>590)and(l<=600) then n:=round(190.5-63.5*(l-590)/10);
31 if (l>580)and(l<=590) then n:=round(255-63.5*(l-580)/10);
32 if (l>495)and(l<=510) then n:=round(127.5*(l-495)/15);
33 if (l>510)and(l<=525) then n:=round(127.5+127.5*(l-510)/15);
34 Green:=n;
35 end;
36 
37 procedure TForm1.FormDblClick(Sender: TObject);
38 var n,k:integer;
39 begin
40 for k:=20 to 360 do
41 for n:=760 to 1520 do
42 form1.Canvas.pixels[n-760,k]:= RGB(Red(round(n/2)),Green(round(n/2)),Blue(round(n/2)));
43 end;
44 
45 ...


Результаты показаны ниже:

Image

Применяя к построению определенные условия, можно получить спектр испускания атома водорода:

Image
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Sep 03, 2019 2:48 pm


Abstract: This target of this research is the design of a light absorbance measurement device for chemical education. In the present, the concentration of solution still cannot be measured. The measurement must be indirect and convert to concentration. In the chemical laboratory, a UV-spectrophotometer is used to measure the concentration of solution. It uses the light for checking the absorbance of solution by Beer-Lambert law. Although the UV-spectrophotometer is usually used in the chemical laboratories, it is very expensive. Therefore, it is not enough for students in the class. However, students do not use all of function of the UV-spectrophotometer in the chemical class. To achieve efficient chemical education, we decrease the inessential functions of the UV- spectrophotometer and develop a simple light absorbance measurement device to be proper for chemical education. The proposed device is cheaper and lighter than the commercial UV-spectrophotometer. Therefore, it can purchase for many students in class. Moreover, to improve understanding of students about light absorbance, the program collecting and calculating the data in Microsoft Excel is written.

Main Figures:
Image Image
Image Image
Image Image

References
[1] C. Areejitranusorn, Scientific Instrument, Bangkok, 2001.
[2] S. Bano, T. Altaf and S. Akbar, Microcontrolled based spectrophotometer using compact disc as diffraction grid, Proc. of SPIE - The International Society for Optical Engineering, pp.332-336, 2010.
[3] S. M. Liu, The development of a portable spectrophotometer for noncontact color measurement, IEEE Trans. Instrumentation and Measurement, vol.53, no.l, pp.155-162, 2004.
[4] T.-S. Yeh and S.-S. Tseng, A low cost LED based spectrometer, Journal of the Chinese Chemical Society, vol.53, pp.1067-1072, 2006.
[5] L. Tymecki, M. Pokrzywnicka and R. Koncki, Paired emitter detector diode (PEDD)-based photom¬etry - An alternative approach, The Analyst, vol.133, no.11, pp.1501-1504, 2008.
[6] S. J. Tavener and J. E. Thomas-oates, Build your own spectrophotometer, Education in Chemistry, pp.151-154, 2007.
[7] A. Teerasong, B. Panijpan and P. Ruenwangsa, Color and Light Absorbance Measurement, http://www.il.mahidol.ac.th/e-media/col ... index.html, 2016.
[8] M. Tiantong, Statistics and Research Methods in Information Technology, 2005.
[9] Smart Learning Team, Advance PIC microcontroller, Smart Learning, pp.406-410, 2012.
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Apr 06, 2020 2:33 pm

6. Dual-Channel Colorimeter with Programmable Gain Transimpedance Amplifiers and Digital Synchronous Detection // CN-0363 Design Support Package: http://www.analog.com/CN0363-DesignSupport

Abstract: The circuit shown is a dual-channel colorimeter featuring a modulated light source transmitter, programmable gain transimpedance amplifiers on each channel, and a very low noise, 24-bit Σ-Δ analog-to-digital converter (ADC). The output of the ADC connects to a standard FPGA mezzanine card. The FPGA takes the sampled data from the ADC and implements a synchronous detection algorithm. By using modulated light and digital synchronous detection rather than a constant (dc) source, the system strongly rejects any noise sources at frequencies other than the modulation frequency, providing excellent accuracy. The dual-channel circuit measures the ratio of light absorbed by the liquids in the sample and reference containers at three different wavelengths. This measurement forms the basis of many chemical analysis and environmental monitoring instruments used to measure concentrations and characterize materials through absorption spectroscopy.

Main Figures:
Image

Image

Image

Image

Image


References
1. CN-0363 Design Support Package: http://www.analog.com/CN0363-DesignSupport

2. Orozco, Luis. “Synchronous Detectors Facilitate Precision, LowLevel Measurements.” Analog Dialogue 48-11, November 2014.

3. Orozco, Luis. "Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems." Analog
Dialogue 47-05, May 2013.

4. Kester, Walt, Scott Wurcer, and Chuck Kitchin. High Impedance Sensors, Practical Design Techniques for Sensor Signal
Conditioning, Section 5. 1999.

5. Skoog, Douglas A., F. James Holler, and Stanley R. Crouch. “An Introduction to Spectrometric Methods.” Instrumental
Analysis. USA: Brooks/Cole, Cengage Learning, 2007.
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Apr 07, 2020 10:53 am

7.Benjamin J. Place. Activity Analysis of Iron in Water Using a Simple LED Spectrophotometer // Anal Sci. - 2013.-Vol.29(6). P. 677–680.

Abstract: Access to clean water is a vitally important part of the lives of all people, yet there is often a concern about the contamination of water by heavy metals. The detection and measurement of heavy metals in water can be performed using colorimetric reagents paired with ultraviolet−visible light (UV−vis) spectrophotometry. The presented activity includes construction of a simple, inexpensive single-wavelength spectrophotometer using LEDs as the light source and detector.
Using a colorimetric reagent, 2,4,6-tripyridyl-s-triazine, the concentration of iron can be measured by the LED spectrophotometer. Multiple natural water samples were collected and analyzed by this technique, and the performance of the LED spectrophotometer was compared to that of a conventional UV−vis spectrophotometer. The LED spectrophotometer had comparable results to those of the conventional UV−vis spectrophotometer while teaching students about simple circuit design, spectroscopy, and water quality measurements.

Main Figures:
Image

Image

Image

Image

References
(1). CNN. Flint Water Crisis Fast Facts, June 14, 2017 http://www.cnn.com/2016/03/04/us/flint- ... index.html (accessed Jan 2019).

(2). CNN. Getting Drinking Water to More in Puerto Rico Brings Challenges, September 28, 2017
http://www.cnn.com/2017/09/28/us/puerto ... index.html (accessed Jan 2019).

(3). Maupin MA; Kenny JF; Hutson SS; Lovelace JK; Barber NL; Linsey KS Estimated Use of Water
in the United States in 2010: U.S. Geological Survey Circular 1405; U.S. Geological Survey:
Reston, VA, 2014 DOI: 10.3133/cir1405.

(4). National Primary Drinking Water Regulations, Code of Federal Regulations, Part 141, Title 40;
Government Publication Office: Washington, DC, 1998 https://www.gpo.gov/fdsys/pkg/
CFR-1998-title40-vol14/pdf/CFR-1998-title40-vol14-part141.pdf (accessed Jan 2019).

(5). United States Environmental Protection Agency (USEPA). National Primary Drinking Water
Regulations. https://www.epa.gov/ground-water-and-dr ... egulations (accessed Jan 2019).

(6). Environmental Chemistry, 8th ed.; Manahan SE, Eds.; CRC Press: New York, 2004.

(7). Albert DR; Todt MA; Davis HF A Low-Cost Quantitative Absorption Spectrophotometer. J.
Chem. Educ 2012, 89, 1432–1435.

(8). Wilson MV; Wilson E Authentic Performance in the Instrumental Analysis Laboratory: Building a
Visible Spectrophotometer Prototype. J. Chem. Educ 2017, 94, 44–51.

(9). Asheim J; Kvittingen EV; Kvittingen L; Verley R A Simple, Small-Scale Lego Colorimeter with a
Light-Emitted Diode (LED) Used as Detector. J. Chem. Educ 2014, 91, 1037–1039.

(10). Kvittingen EV; Kvittingen L; Sjursnes BJ; Verley R Simple and Inexpensive UV-Photometer
Using LEDs as Both Light Source and Detect. J. Chem. Educ 2016, 93, 1814–1817.

(11). Hach Company. Iron Test Kit IR-21 DOC326.97.00064. https://www.hach.com/iron-color-disctes ... 7640216697 (accessed Jan 2019). Place Page 7 Anal Sci. Author manuscript; available in PMC 2019 May 16. NIST Author Manuscript NIST Author Manuscript NIST Author Manuscrip
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Apr 07, 2020 2:05 pm

8. David González-Morales, Asmilly Valencia, Astrid Díaz-Nuñez, Marcial Fuentes-Estrada, Oswaldo López-Santos. Development of a Low-Cost UV-Vis Spectrophotometer and Its Application for the Detection of Mercuric Ions Assisted by Chemosensors // Sensors. - 2020, 20, 906; doi:10.3390/s20030906

Abstract: Detection of an environmental contaminant requires the use of expensive measurement equipment, which limits the realization of in situ tests because of their high cost, their limited portability, or the extended time duration of the tests. This paper presents in detail the development of a portable low-cost spectrophotometer which, by using a specialized chemosensor, allows detection of mercuric ions (Hg2+), providing effective and accurate results. Design specifications for all the stages assembling the spectrophotometer and the elements selected to build them are presented along with the process to synthesze the chemosensor and the tests developed to validate its performance in comparison with a high-precision commercial laboratory spectrophotometer.

Main Figures:
Image

Image
Image

Image

Image

Image

References
1. Thomas, O.; Burgees, C. UV-Visible Spectrophotometry of Water and Wastewater, 2nd ed.; Elsevier Science:
London, UK, 2017; p. 2.
2. Cazes, J. Analytical Instrumentation Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 127.
3. Perkampus, H.-H. UV-VIS Spectroscopy and Its Applications; Springer Science and Business Media LLC: Berlin,
Germany, 1992; p. 12.
4. Worsfold, P.; Zagatto, E. Spectrophotometry—Overview. In Encyclopedia of Analytical Science, 3rd ed.;
Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 244–248.
5. Noui, L.; Hill, J.; Keay, P.J.; Wang, R.Y.; Smith, T.; Yeung, K.; Habib, G.; Hoare, M. Development of a high
resolution UV spectrophotometer for at-line monitoring of bioprocesses. Chem. Eng. Process. Process. Intensif.
2002, 41, 107–114. [CrossRef]
6. Gonzaga, F.B.; Pasquini, C. A low cost short wave near infrared spectrophotometer: Application for
determination of quality parameters of diesel fuel. Anal. Chim. Acta 2010, 670, 92–97. [CrossRef] [PubMed]
7. O’Toole, M.; Diamond, D. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.
Sensors 2008, 8, 2453–2479. [CrossRef] [PubMed]
8. Chuen, W.; Khoo, B.; Abdullah, A.F. A simple, low-cost and portable LED-based multi-wavelentgth light
source for forensic application. Proc. Int. Soc. Opt. Photonics (SPIE) 2012, 8560, 18–27.
9. Chaianantakul, N.; Wutthi, K.; Kamput, N.; Pramanpol, N.; Janphuang, P.; Pummara, W.; Phimon, K.;
Phatthanakun, R. Development of mini-spectrophotometer for determination of plasma glucose. Spectrochim.
Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 670–676. [CrossRef]
10. Yeh, T.S.; Tseng, S.S. A Low Cost LED Based Spectrometer. J. Chin. Chem. Soc. 2013, 53, 1067–1072. [CrossRef]
11. Hardie, K.; Agne, S.; Kuntz, K.B.; Jennewein, T. Inexpensive LED-based spectrophotometer for analyzing
optical coatings. Instrum. Detect. 2016, 1–19.
12. Masi, A.J.; Sesselmann, M.; Rodrigues, D.L. A Compact System for Measurement of Absorbance of Light.
In Proceedings of the Society for Experimental Mechanics Series; Springer Science and Business Media LLC: Berlin,
Germany, 2011; Volume 6, pp. 773–780.
13. Visconti, P.; Lay-Ekuakille, A.; Primiceri, P.; Ciccarese, G.; De Fazio, R. Hardware Design and Software
Development for a White LED-Based Experimental Spectrophotometer Managed by a PIC-Based Control
System. IEEE Sens. J. 2017, 17, 2507–2515. [CrossRef]
14. Albert, D.R.; Todt, M.A.; Davis, H.F. A Low-Cost Quantitative Absorption Spectrophotometer. J. Chem. Educ.
2012, 89, 1432–1435. [CrossRef]
15. Alam, A.E.; Islam, R.; Faria, I.J. Development and validation of a low-cost visible light spectrophotometer.
In Proceedings of the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE),
Dhaka, Bangladesh, 28–30 September 2017; pp. 653–657.
16. Kittipanyangam, S.; Abe, K.; Eguchi, K. Design of a measurement device explaining the relationship between
the concentration of solution and the light absorbance for chemical education. In Proceedings of the 2016
13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016; pp. 1–6.
17. Liu, S.-M. The Development of a Portable Spectrophotometer for Noncontact Color Measurement. IEEE
Trans. Instrum. Meas. 2004, 53, 155–162. [CrossRef]
18. Bano, S.; Altaf, T.; Akbar, S. Microcontrolled based spectrophotometer using compact disc as diffraction grid.
Asia Commun. Photonics Conf. Exhib. 2010, 332–336.
19. Veras, G.; Silva, E.C.; Lyra, W.S.; Soares, S.F.C.; Guerreiro, T.B.; Santos, S.R.B.; Neto, J.G.V. A portable,
inexpensive and microcontrolled spectrophotometer based on white LED as light source and CD media as
diffraction grid. Talanta 2009, 77, 1155–1159. [CrossRef] [PubMed]
20. Zhang, X.; Fang, Y.; Zhao, Y. A Portable Spectrophotometer for Water Quality Analysis. Sens. Transducers
2013, 148, 47–51.
21. Chen, P.-J.; Wang, H.-T.; Lin, L.-Y.; Hsu, B.-D.; Liu, D.-R.; Hwang, C.-H.; Wu, W.-H. A Practical Portable
Photometer using LEDs as Inspection light source. In Proceedings of the 2017 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–6.
22. Cary 60 UV-Vis Spectrophotometer. Available online: https://www.agilent.com/en/products/uv- ... -60-uv-vis (accessed on 12 June 2018).
23. DR-1900 Portable Spectrophotometer. Available online: https://www.hach.com/dr1900-portablespe ... 8915675456 (accessed on 12 June 2018).
24. García-Beltrán, O.; Mena, N.; Berríos, T.A.; Castro, E.A.; Cassels, B.K.; Núñez, M.T.; Aliaga, M.E. A selective
fluorescent probe for the detection of mercury (II) in aqueous media and its applications in living cells.
Tetrahedron Lett. 2012, 53, 6598–6601. [CrossRef]
25. Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.;
Roeser, M. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest
per capita mercury pollution. Sci. Total. Environ. 2011, 410, 154–160. [CrossRef] [PubMed]
26. Palacios-Torres, Y.; Caballero-Gallardo, K.; Olivero-Verbel, J. Mercury pollution by gold mining in a global
biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere 2018, 193, 421–430. [CrossRef]
[PubMed]
27. García-Beltrán, O.; Rodriguez, A.; Trujillo, A.; Cañete, A.; Aguirre, P.; Gallego-Quintero, S.; Núñez, M.T.;
Aliaga, M.E. Synthesis and characterization of a novel fluorescent and colorimetric probe for the detection of
mercury (II) even in the presence of relevant biothiols. Tetrahedron Lett. 2015, 56, 5761–5766. [CrossRef]
28. Wang, Y.; Gao, M.; Liao, C.; Yu, F.; Chen, L. A sulfydryl-based near-infrared ratiometic fluorescent probe
for assessment of acute/chronic mercury exposure via associated determination of superoxide anion and
mercury ion in cells and in vivo. Sens. Actuators B Chem. 2019, 301, 127038. [CrossRef]
29. He, Q.; Zhang, Q.; Cao, W.; Yin, T.; Zhao, S.; Yin, X.; Zhao, H.; Tao, W. Detecting trace of mercury ions in water
using photoacoustic method enhanced by gold nanospheres. Microchem. J. 2019, 150, 104058. [CrossRef]
30. Korbas, M.; O’Donoghue, J.L.; Watson, G.E.; Pickering, I.J.; Singh, S.P.; Myers, G.J.; Clarkson, T.W.;
George, G.N. The Chemical Nature of Mercury in Human Brain Following Poisoning or Environmental
Exposure. ACS Chem. Neurosci. 2010, 1, 810–818. [CrossRef]
31. Zhou, Y.; Vaidya, V.S.; Brown, R.P.; Zhang, J.; Rosenzweig, B.A.; Thompson, K.L.; Miller, T.J.; Bonventre, J.V.;
Goering, P.L. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and
kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol. Sci. 2007, 101, 159–170.
[CrossRef] [PubMed]
32. Milioni, A.L.V.; Nagy, B.V.; Moura, A.L.A.; Zachi, E.C.; Barboni, M.T.; Ventura, D.F. Neurotoxic impact of
mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous
system evaluated by dynamic pupillometry. NeuroToxicology 2017, 59, 263–269. [CrossRef] [PubMed]
33. Das, K.; Siebert, U.; Gillet, A.; Dupont, A.; Di-Poï, C.; Fonfara, S.; Mazzucchelli, G.; De Pauw, E.; De
Pauw-Gillet, M.-C. Mercury immune toxicity in harbour seals: Links to in vitro toxicity. Environ. Health 2008,
7, 52. [CrossRef] [PubMed]
34. Tan, S.W.; Meiller, J.C.; Mahaffey, K.R. The endocrine effects of mercury in humans and wildlife. Crit. Rev.
Toxicol. 2009, 39, 228–269. [CrossRef] [PubMed]
35. Aliaga, M.; Gazitua, M.; Rojas-Bolaños, A.; Fuentes-Estrada, M.; Durango, D.; García-Beltrán, O. A selective
thioxothiazolidin-coumarin probe for Hg2+ based on its desulfurization reaction. Exploring its potential for
live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117372. [CrossRef] [PubMed]
36. Hanna, C.P.; Tyson, J.F.; McIntosh, S. Determination of total mercury in waters and urine by flow injection
atomic absorption spectrometry procedures involving on- and off-line oxidation of organomercury species.
Anal. Chem. 1993, 65, 653–656. [CrossRef]
37. Darbha, G.K.; Singh, A.K.; Rai, U.S.; Yu, E.; Yu, H.; Ray, P.C. Selective Detection of Mercury (II) Ion Using
Nonlinear Optical Properties of Gold Nanoparticles. J. Am. Chem. Soc. 2008, 130, 8038–8043. [CrossRef]
38. Leermakers, M.; Baeyens, W.; Quevauviller, P.; Horvat, M. Mercury in environmental samples: Speciation,
artifacts and validation. TrAC Trends Anal. Chem. 2005, 24, 383–393. [CrossRef]
39. Zhang, Y.; Chen, H.; Chen, D.; Wu, D.; Chen, Z.; Zhang, J.; Chen, X.; Liu, S.; Yin, J. A colorimetric and
ratiometric fluorescent probe for mercury (II) in lysosome. Sens. Actuators B Chem. 2016, 224, 907–914.
[CrossRef]
40. Zhang, W.-B.; Sun, C.-X.; Yang, X.-A. Magnetic solid-phase extraction combined with in situ slurry cold
vapor generation atomic fluorescence spectrometry for preconcentration and determination of ultratrace
mercury. Anal. Methods 2014, 6, 2876–2882. [CrossRef]
41. Wang, L.; Zhou, J.-B.; Wang, X.; Wang, Z.-H.; Zhao, R.-S. Simultaneous determination of copper,
cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges
as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid
chromatograph. Anal. Bioanal. Chem. 2016, 408, 4445–4453. [CrossRef] [PubMed]
42. Wang, N.; Lin, M.; Dai, H.; Ma, H. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites
for ultrasensitive electrochemical sensing of mercury ions based on thymineemercuryethymine structure.
Biosens. Bioelectron. 2016, 79, 320–326. [CrossRef] [PubMed]
43. Wang, Y.; Jiang, L.; Leng, Q.; Wu, Y.; He, X.; Wang, K. Electrochemical sensor for glutathione detection based
on mercury ion triggered hybridization chain reaction signal amplification. Biosens. Bioelectron. 2016, 77,
914–920. [CrossRef] [PubMed]
44. Bui, M.-P.N.; Brockgreitens, J.; Ahmed, S.; Abbas, A. Dual detection of nitrate and mercury in water using
disposable electrochemical sensors. Biosens. Bioelectron. 2016, 85, 280–286. [CrossRef] [PubMed]
45. Aliaga, M.E.; García-Río, L.; Pessêgo, M.; Montecinos, R.; Fuentealba, D.; Uribe, I.; Martín-Pastor, M.;
García-Beltrán, O. Host–guest interaction of coumarin-derivative dyes and cucurbit[7]uril: Leading to the
formation of supramolecular ternary complexes with mercuric ions. New J. Chem. 2015, 39, 3084–3092.
[CrossRef]
46. Qin, S.; Chen, B.; Huang, J.; Han, Y. A Thiocoumarin-Based Colorimetric and Ratiometric Fluorescent Probe
for Hg2+ in Aqueous Solution and Its Application in Live-Cell Imaging. New J. Chem. 2018, 42, 12766–12772.
[CrossRef]
47. Bui, D.A.; Hauser, P.C. Analytical devices based on light-emitting diodes—A review of the state-of-the-art.
Anal. Chim. Acta 2015, 853, 46–58. [CrossRef]
48. Shivok, T. Diffraction Gratings; US Naval Academy Annapolis: Annapolis, MD, USA, 2014.
49. Passos, M.L.; Saraiva, M.L.M. Detection in UV-visible spectrophotometry: Detectors, detection systems,
and detection strategies. Measurement 2019, 135, 896–904. [CrossRef]
50. Gonzalez-Morales, D.F.; Lopez-Santos, O.; Garcia-Beltran, O. Low-Cost Spectrophotometer for In-Situ
Detection of Mercury in Water. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India,
28–31 October 2018; pp. 1–4.
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Wed Apr 08, 2020 10:27 am

9. Seo Hyun Kim, Hong Jin Kong, Jong Ung Lee, Jun Ho Lee, and Jai Hoon Lee. Design and construction of an Offner spectrometer based on geometrical analysis of ring fields // Rev. Sci. Instrum. - 2014. 85, 083108: doi/10.1063/1.4892479

Abstract: A method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures. The analytical design applying this equation was demonstrated using the optical design software Code V in order to manufacture a spectrometer working in wavelengths of 900–1700 nm. The simulation results show that the new concept offers an analytical initial design taking the least time of calculation. The simulated spectrometer exhibited a modulation transfer function over 80% at Nyquist frequency, root-mean-square spot diameters under 8.6 μm, and a spectral resolution of 3.2 nm. The final design and its realization of a high resolution Offner spectrometer was demonstrated based on the simulation result. The equation and analytical design procedure shown here can be applied to most Offner systems regardless of the wavelength range. © 2014 AIP Publishing LLC.

Main Figures:
Image

Image

Image

Image


References
D. Landgrebe, “The evolution of Landsat data analysis,” Photogramm. Eng.
Remote Sens. LXIII(7), 859–867 (1997).

H. Ren, “Automatic spectral target recognition in hyperspectral imagery,”
IEEE Trans. Aerospace Electronic Systems 39(4), 1232–1249 (2003).

L. Giglio, “An enhanced contextual fire detection algorithm for MODIS,”
Remote Sensing Environ. 87(2), 273–282 (2003).

L. Ustin, “Using imaging spectroscopy to study ecosystem processes and
properties,” Bioscience 54(6), 523–534 (2004).

O. Carrasco, “Hyperspectral imaging applied to medical diagnoses and
food safety,” AeroSense, 215–221 (2003).

I. B. Strachan, “Impact of nitrogen and environmental conditions on corn
as detected by hyperspectral reflectance,” Remote Sensing Environ. 80(2),
213–224 (2002).

M. T. Eismann, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–101(1996).

A. Gowen, “A hyperspectral imaging – An emerging process analytical
tool for food quality and safety control,” Trends Food Sci. Techn. 18(12),
590–598 (2007).

J. Fisher, “Comparison of low-cost hyperspectral sensors,” Proc. SPIE
3438, 23–30 (1998).

L. Mertz, “Concentric spectrographs,” Appl. Opt. 16(12), 3122–3124
(1977).

D. R. Lobb, “Theory of concentric designs for grating spectrometers,”
Appl. Opt. 33(13), 2648–2658 (1994).

D. R. Lobb, “Imaging spectrometers using concentric optics,” Proc. SPIE
3118, 339–347 (1997).

P. Mouroulis, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).

P. Mouroulis, “Design of pushbroom imaging spectrometers for optimum
recovery of spectroscopic and spatial information,” Appl. Opt. 39(13),
2210–2220 (2000).

P. Mouroulis, “Pushbroom imaging spectrometer with high spectroscopic
data fidelity: Experimental demonstration,” Opt. Eng. 39(3), 808–816
(2000).

M. P. Chrisp, “Convex diffraction grating imaging spectrometer,” U.S.
patent 5,880,834 (1999).

X. Prieto-Blanco, “Analytical design of an Offner imaging spectrometer,”
Opt. Exp. 14(20), 9156–9168 (2006).

J. Choi, “Zoom lens design for a novel imaging spectrometer that controls
spatial and spectral resolution individually,” Appl. Opt. 45(15), 3430–3441
(2006).

T. H. Kim, “Design and fabrication of a 900–1700 nm hyper-spectral imaging spectrometer,” Opt. Commun. 283(3), 355–361 (2010).

H. Ku, “Optical design, performance, and tolerancing of an Offner imaging
spectrograph,” Proc. SPIE 8491, 84910K1–84910K8, (2012).

A. Offner, “New concepts in projection mask aligner,” Opt. Eng. 14(2),
130–132 (1975).

A. Offner, “Annular field systems and the future of optical microlithography,” Opt. Eng. 26, 294–299 (1987).
23D. M. Williamson, “Evolution of ring field systems in microlithography,”
Proc. SPIE 3482, 369–376 (1998).

R. L. Lucke, “Out-of-plane dispersion in an Offner spectrometer,” Opt.
Eng. 46(7), 073004-1–073004-4 (2007).

X. Prieto-Blanco, “Off-plane anastigmatic imaging in Offner spectrometers,” J. Opt. Soc. Am. A 28(11), 2332–2339 (2011).

Y. Huang, “Non-approximate method for designing annular field of twomirror concentric system,” Chin. Opt. Lett. 10(3), 032201–032204 (2012).

J. M. Lerner, “Imaging spectrometer fundamentals for researchers in the
biosciences - A tutorial,” Cytometry 69A, 712–734 (2006).
Admin
Site Admin
 
Posts: 252
Joined: Wed Sep 20, 2017 9:55 am


Return to Литература по теме

cron

User Menu

Login