It is currently Wed Nov 20, 2019 2:20 pm

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

Фотометрия / спектрофотометрия

Подборка научных статей

by Admin » Wed Aug 07, 2019 3:11 pm


В данном разделе будут выкладываться научные статьи, посвященные спектрофотометрическому методу анализа, а также новым приборам и разработкам для спектрофотометрии.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Wed Aug 07, 2019 3:37 pm


Abstract: Разработан прибор для измерения спектров отражения. Прибор построен на основе микроконтроллера ATtiny24, оснащенного шестью светодиодами с длинами волн 390, 470, 520, 565, 590, 655 нм и однокристальным фотоприемником OPT-101. Микроконтроллер последовательно зажигает и гасит светодиоды, измеряя отраженный сигнал от образца. Калибровка прибора (100% отражения) производится по листу белой бумаги.

Main Figures:
Image
Прибор для измерения спектров отражения

Image


OPT101 Monolithic Photodiode and Single-Supply Transimpedance Amplifier

References
[1] Бураков В. С. Практическое руководство по спектральному
анализу / В. С. Бураков, А. А. Янковский. – Минск. :АН БССР, 1960. – 236.
[2] Дробышев А. И. Основы атомного спектрального анализа / А. И.
Дробышев. – С.-Петерб. Ун-та, 2000. - 198с.
[3] Зайдель А. Н. Основы спектрального анализа / А. Н. Зайдель. –
М. : Наука, 1965. – 322 с.
[4] Зайдель А. Н. Таблицы спектральных линий / А. Н. Зайдель, В. К.
Прокофьев, С. М. Райский, Е. Я. Шрейдер. – М. :Физматлит, 1962. – 607 с.
[5] Ландсберг Г. С. Оптика, 6-е изд., стереот. / Г. С. Ландсберг. – М. :
Физматлит, 2003. – 848 с.
[6] Лебедева В. В. Техника оптической спектроскопии / В. В.
Лебедева. – М. : изд-во МГУ, 1977. – 372 с.
[7] Митричев В. С. Основы криминалистического исследования
материалов, веществ и изделий из них / В. С. Митричев, В. Н. Хрусталев. –
СПб. : Питер, 2003. – 591 с.
[8] Паспорт СЛ – 13: паспорт
[9] Пономарев А. Н. Химический и спектральный анализ в
металлургии / А. Н. Пономарев. – М. : «Наука», 1965. – 383 с.
[10] Свентицкий Н. С. Визуальные методы спектрального анализа / Н.
С. Светницкий. – М. : 1961. – 314 с.
[11] Сухенко К. А. Спектральный анализ сталей и сплавов / К. А.
Сухенко – М. : Оборонгиз, 1954.
[12] Тарасов К. И. Спектральные приборы / К. И. Тарасов. – Л.:
Машиностроение, 1968. – 388 с.
[13] Терек Т. Эмиссионный спектральный анализ / Т. Терек, Й. Мика,
Э. Гегуш. – М. : Мир, 1982. – 455 с.
[14] Методы атомно-эмиссионной спектроскопии [электронный
ресурс] URL:http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/03_ana
liticheskaya_khimiya_chast_II/5030 (дата обращения 11.02.2017)
[15] Медицинская энциклопедия [электронный ресурс]:
http://www.medical-enc.ru/ (дата обращения 10.05.17)
[16] В. Шеленберг Принципы работы и устройство приемников света
на ПЗС [электронный ресурс] URL: http://www.startcopy.net/notes/ccd.shtml
(дата обращения 18.04.2017)
[17] О. Шенцова сравнительный спектральный анализ в
криминалистической экспертизе на стилоскопе сл-13 с фотоэлектрической
приставкой [электронный ресурс]
http://www.proexpertizu.ru/general_questions/661/ ( дата обращения 17.02.2017)
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Aug 08, 2019 4:22 pm

2. Junjie Ma , Fansheng Meng , Yuexi Zhou Yeyao Wang, Ping Shi. DistributedWater Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks // Sensors 2018, 18, 606.

Abstract: Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.


Main Figures:
Image
Image
Image
Image


References
1. Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution
sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.
Sci. Total Environ. 2016, 566, 1552–1567. [CrossRef] [PubMed]
2. Zhao, Y.; Xia, X.H.; Yang, Z.F. Assessment of water quality in Baiyangdian Lake using multivariate statistical
techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [CrossRef]
3. Kim, C.; Eom, J.B.; Jung, S.; Ji, T. Detection of organic compounds in water by an optical absorbance method.
Sensors 2016, 16, 61. [CrossRef] [PubMed]
4. Xu, L.; Luo, Y. A new technology for water quality monitoring based on UV-visible spectrum analysis.
Spectrosc. Spectr. Anal. 2014, 34, 443–444.
5. Cao, H.; Qu, W.; Yang, X.; Jia, S.; Wang, C.; Lu, C. Research on rapid determination of organic matter
concentration in aquaculture water based on UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3015–3019.
6. Kus, M.; Ribbens, S.; Meynen, V.; Cool, P. Microvolume TOC analysis as useful tool in the evaluation of lab
scale photocatalytic processes. Catalysts 2013, 3, 74–87. [CrossRef]
7. Zhao, Y.; Li, Y.; Zhen, Y.; Fang, Y. A novel monitoring system for COD using optical ultraviolet absorption
method. Procedia Environ. Sci. 2011, 10, 2348–2353.
8. Tang, B.; Zhao, J.;Wei, B.; Jiang, S.; Luo, J. A method of optimizing the prediction model for the determination
of water COD by using UV-visible spectroscopy. China Environ. Sci. 2015, 35, 478–483.
9. Tang, B.; Wei, B.; Wu, D.; Mi, D.; Zhao, J.; Feng, P.; Jiang, S.; Mao, B. Experimental research of turbidity
influence on water quality monitoring of COD in UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3020–3024.
10. Wu, D.;Wei, B.; Feng, P.; Tang, B.; Liu, J. Denoising algorithm of UV-visible spectroscopy on water quality
detection based on two-dimension restructuring and dynamic pane. Spectrosc. Spectr. Anal. 2016, 36,
1044–1050.
11. Tang, B.;Wei, B.; Mao, B.; Zhao, J.; Feng, P. Noise analysis and denoising research on the UV-visible absorption
spectroscopy water quality detection system. Laser Optoelectron. Prog. 2014, 51, 197–203. [CrossRef]
12. Tang, G.; Wei, B.; Wu, D.; Feng, P.; He, P.; Liu, J.; Chen, M. Research on compression and reconstruction
algorithm of spectral data in water quality monitoring. Environ. Sci. Technol. 2016, 39, 6–10.
13. Wang, X.; Ma, J.;Wang, S.; Bi, D. Cluster-based dynamic energy management for collaborative target tracking
in wireless sensor networks. Sensors 2007, 7, 1193–1215. [CrossRef]
14. Wang, X.; Ma, J.; Wang, S. Parallel energy-efficient coverage optimization with maximum entropy clustering
in wireless sensor networks. J. Parallel Distrib. Comput. 2009, 69, 838–847. [CrossRef]
15. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantitative online analysis of
environmental trace heavy metals with total-reflection X-ray fluorescence. Sensors 2015, 15, 10650–10675.
[CrossRef] [PubMed]
16. Hou, D.; Zhang, J.; Chen, L.; Huang, P.; Zhang, G. Water quality analysis by UV-visible spectroscopy:
A review of methodology and application. Spectrosc. Spectr. Anal. 2013, 33, 1839–1844.
17. Zhao, Y.; Li, Y.; Guo, Y.; Gu, B.; Yang, Z. A novel technology for water quality testing based on UV spectral
analysis. Spectrosc. Spectr. Anal. 2012, 32, 1301–1305.
18. Liu, X.; Zhang, H. Rapid determination of COD in aquaculture water based on LSSVM with UV-visible
spectroscopy. Spectrosc. Spectr. Anal. 2014, 34, 2804–2807.
19. Wang, X.;Wang, S.; Ma, J. An improved particle filter for target tracking in sensor systems. Sensors 2007, 7,
144–156. [CrossRef]
Sensors 2018, 18, 606 19 of 19
20. Wang, X.; Ma, J.; Ding, L.; Bi, D. Robust forecasting for energy efficiency of wireless multimedia sensor
networks. Sensors 2007, 7, 2779–2807. [CrossRef] [PubMed]
21. Wang, X.; Ma, J.; Wang, S.; Bi, D. Time series forecasting energy-efficient organization of wireless sensor
networks. Sensors 2007, 7, 1766–1792. [CrossRef] [PubMed]
22. Taormina, R.; Chau, K.W.; Sivakumar, B. Neural network river forecasting through baseflow separation and
binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [CrossRef]
23. Gholami, V.; Chau, K.W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations
using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [CrossRef]
24. Wang,W.C.; Xu, D.M.; Chau, K.W.; Chen, S. Improved annual rainfall-runoff forecasting using PSO–SVM
model based on EEMD. J. Hydroinform. 2013, 15, 1377–1390. [CrossRef]
25. Zhang, S.; Chau, K.W. Dimension reduction using semi-supervised locally linear embedding for plant leaf
classification. In Emerging Intelligent Computing Technology and Applications; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 948–955.
26. Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks
coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [CrossRef]
27. Chau, K.W.; Wu, C.L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction.
J. Hydroinform. 2010, 12, 458–473. [CrossRef]
28. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantification of environmental trace
elements with total reflection X-ray fluorescence. In Proceedings of the IEEE 15th International Conference
on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015; pp. 1580–1586.
29. Wang, X.; Ma, J.; Wang, S.; Bi, D. Distributed particle swarm optimization and simulated annealing for
energy-efficient coverage in wireless sensor networks. Sensors 2007, 7, 628–648. [CrossRef]
30. Wang, X.; Ma, J.;Wang, S. Distributed energy optimization for target tracking in wireless sensor networks.
IEEE Trans. Mobile Comput. 2009, 9, 73–86. [CrossRef]
31. Wang, C.; Wu, F.; Zhao, H.; Lu, S. Temporal information entropy and its application in the detection of
spatio-temporal changes in vegetation coverage based on remote sensing images. Acta Ecol. Sin. 2017, 37,
7359–7367.
32. Al-Omari, A.I. Estimation of entropy using random sampling. J. Comput. Appl. Math. 2014, 261, 95–102.
[CrossRef]
33. Yentes, J.M.; Hunt, N.; Schmid, K.K. The appropriate use of approximate entropy and sample entropy with
short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [CrossRef] [PubMed]
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Aug 27, 2019 11:08 am


Abstract: A spectrophotometer is the basic measuring equipment essential to most research activity fields requiring samples to be measured, such as physics, biotechnology and food engineering. This paper proposes a system that is able to detect sample concentration and color information by using LED and color sensor. Purity and wavelength information can be detected by CIE diagram, and the concentration can be estimated with purity information. This method is more economical and efficient than existing spectrophotometry, and can also be used by ordinary persons. This contribution is applicable to a number of fields because it can be used as a colorimeter to detect the wavelength and purity of samples.

Main Figures:
Image
Image
Image


References
[1] S. Nishino and K. Ohshima, A feasibility study of gender recognition with a near infrared ray scanning
spectrophotometer, Electronics and Communications in Japan 94 (2011), 59-68.
[2] A.K. Gaigalas, L. Wang, V. Karpiak, Y.Z. Zhang and S. Choquette, Measurement of scattering cross section with a
spectrophotometer with an integrating sphere detector, Journal of Research of the National Institute of Standards and
Technology 117 (2012), 202-215.
[3] K.S. Johnson, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, D.D. Swift and S.C. Riser, Long-term nitrate measurements
in the ocean using the in situ ultraviolet spectrophotometer: Sensor integration into the APEX profiling float, Journal of
Atmospheric and Oceanic Technology 30 (2013), 1854-1866.
[4] A. Penzkofer, Optical rotatory dispersion measurement of D-glucose with fixed polarizer analyzer accessory in
conventional spectrophotometer, Journal of Analytical Sciences, Method and Instrumentations 3 (2013), 234-239.
[5] K.Y. Khan, M.A. Khan, R. Niamat, M. Munir, H. Fazal, P. Mazari, N. Seema, T. Bashir, A. Kanwal and S. N. Ahmed,
Element content analysis of plants of genus ficus using atomic absorption spectrometer, African Journal of Pharmacy
and Pharmacology 5 (2011), 317-321.
[6] A. Burkart, S. Cogliati, A. Schickling and U. Rascher, A novel UAV-based ultra-light weight spectrometer for field
spectroscopy, Sensors Journal, Institute of Electrical and Electronics Engineers 14 (2014), 62-67.
[7] F. Antonucci, F. Pallottino, G. Paglia, A. Palma, S. D'Aquino and P. Menesatti, Non-destructive estimation of mandarin
maturity status through portable VIS-NIR spectrophotometer, Food and Bioprocess Technology 4 (2011), 809-813.
[8] T. Atomssa and A.V. Gholap, Characterization of caffeine and determination of caffeine in tea leaves using Uv-visible
spectrometer, African Journal of Pure and Applied Chemistry 5 (2011), 1-8.
[9] T. Makino and H. Wakabayashi, New spectrophotometer system for measuring thermal radiation characteristics of real
surfaces of thermal engineering entirely, Journal of Thermal Science and Technology 6 (2011), 80-92.
[10] Y. Yagiz, M.O. Balaban, H.G. Kristinsson, B.A. Welt and M.R. Marshall, Comparison of minolta colorimeter and
machine vision system in measuring colour of irradiated Atlantic salmon, Journal of the Science of Food and
Agriculture 89 (2009), 728-730.
[11] M. Xu, D.J. McCanna and J.G. Sivak, Use of the viability reagent PrestoBlue in comparison with alamar blue and MTT
to access the viability of human corneal epithelial cells, Journal of Pharmacological and Toxicological Methods 71
(2015), 1-7.
[12] S. Kolusheva, L. Boyer and R. Jelinek, A colorimetric assay for rapid screening of antimicrobial peptides, Nature
Biotechnology 18 (2000), 225-227.
[13] N. Abdullah, H.A. Aziz, N.N.A.N. Yusuf, M. Umar and S.S.A. Amr, Potential of KMnO4 and H2O2 in treating semiaerobic
landfill leachate, Applied Water Science 4 (2014), 303-309.
[14] A. Carabet, C. Florescu, C. Staniloju, C. Podoleanu, M. Visescu, M. Belu and C. Ilie, The efficiency of resita town
water treatment plant, Revista de Chimie 64 (2013), 559-563.
[15] P. Kassal, R. Surina, D. Vrsaljko and I.M. Steinberg, Hydro sol-gel thin films doped with a pH indicator: Effect of
organic modification on optical Ph response and film surface hydrophilicity, Journal of Sol-Gel Science and
Technology 69 (2014), 586-595.
[16] M. Masrie, B.Y. Majlis and J. Yunas, Fabrication of multilayer-PDMS based microfluidic device for bio-particles
concentration detection, Bio-Medical Materials and Engineering 24 (2014), 1951-1958.
[17] X. Gan, N. Pervez, I. Kymissis, F. Hatami and D. Englund, A high-resolution spectrometer based on a compact planar
two dimensional photonic crystal cavity array, Applied Physics Letters 100 (2012), 231104.
[18] D.V. Spracklen, J.L. Jimenez, K.S. Carslaw, D.R. Worsnop, M.J. Evans, G.W. Mann, Q. Zhang, M.R. Canagaratna, J.
Allan, H. Coe, G. McFiggans, A. Rap and P. Forster, Aerosol mass spectrometer constraint on the global secondary
organic aerosol budget, Atmospheric Chemistry and Physics 11 (2011), 12109-12136.
[19] A. Wego, Accuracy simulation of an LED based spectrophotometer, Optik-International Journal for Light and Electron
Optics 124 (2013), 644-649.
[20] T. Bano, G. Yadav and R. DuDudhe, Development and validation of oseltamivir phosphate API by UV-spectrophotometer,
Global Journal of Pharmacology 7 (2013), 294-297.
[21] C. Gomez-Polo, M. Gomez-Polo, A. Celemin-Vinuela and J.A.M.V. De Parga, Differences between the human eye and
the spectrophotometer in the shade matching of tooth color, Journal of Dentistry 42 (2014), 742-745.
[22] T. Coin, S. Lee and S. Chin, Method of combining spectrophotometer and optical imaging equipment to extract optical
parameters for material rendering, Journal of Sensors 2014 (2014), 1-8.
[23] L. Zhang, H. Kong, C.T. Chin, T. Wang and S. Chen, Cytoplasm segmentation on cervical cell images using graph cutbased
approach, Bio-Medical Materials and Engineering 24 (2014), 1125-1131.
[24] X. Wang, Uniformity research on CIE 1931 chromaticity diagram, Commission Internationale de l'Eclairage 178 (2008),
1-84.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Aug 29, 2019 4:10 pm

4. Спектр видимого излучения в компьютерной графике.

Abstract: Одним из основных режимов представления цвета в компьютерной графике является режим RGB — смесь красного, зеленого и синего. Чтобы задать какой либо цвет необходимо присвоить трем переменным R, G, B значения от 0 до 255. Таким образом, можно получить цвет любого оттенка, любой яркости.

Main Figures:
Представление некоторых цветов в режиме RGB
Image

Видимый свет представляет собой э/м волну с интервалом длин волн: 380-760 нм.
В статье мы будем использовать представление света с помощью длины волны.
Из физических наблюдений известно, что красный цвет лежит в интервале длин волн (610;760), оранжевый — (590;610), желтый — (570;590), зеленый — (540;570), голубой — (510;540), синий — (480;510), фиолетовый — (380;480) нм.

Если посмотреть на сплошной спектр видимого излучения, то на нем можно выделить определенные цвета, между которыми существует плавный переход:
Image[/img]

Рассмотрим перевод длины волны в RGB для зеленого цвета. Мы знаем, что зеленый цвет лежит в интервале (540;570). Предположим истинный зеленый цвет приходится на длину волны, лежащую в центре данного интервала: 555 нм. Поэтому при данной длине волны в режиме RGB он будет выглядеть так (0,255,0). При увеличении длины волны зеленый цвет плавно переходит в желтый (255,255,0). На границе этих двух цветов т.е. примерно при длине волны в 570 нм RGB представление будет иметь вид (127,255,0). Для этого интервала можно записать формулы перехода от длины волны к количеству красного, зеленого, синего в режиме RGB.
Анализируя границы указанного интервала длин волн можно заметить, что в нем не присутствует синяя составляющая, поэтому можно сразу записать: B=0. Также видно, что не изменяется зеленая составляющая G=255. А вот для красной составляющей запишем R=[127.5*(lamda-555)/(570-555)], где [] — операция извлечения целой части. Выражение не упрощено для сохранения смысла построения зависимости.
При попадании длины волны в интервал (540,555) зеленый цвет плавно переходит в голубой.
На левой границе этого интервала цвет в режиме RGB имеет вид: (0,255,127). Сравнивая левую(0,255,127) и правую(0,255,0) границу интервала, имеем R=0, G=255
А количество синей составляющей (B) уменьшается от 127 до 0. Переход можно осуществить по следующей формуле: R=[127.5*(1-(lamda-540)/(555-540))]
Используя вышеописанный принцип можно получить формулы перехода для всех интервалов спектра, и реализовать их в виде функций для каждой составляющей.

Реализация:
Code: Select all
01 function Red(l:integer):byte;
02 var n:byte;
03 begin
04 if (l>560)and(l<=760) then n:=255;
05 if (l>495)and(l<=555) then n:=0;
06 if (l>570)and(l<=580) then n:=round(127.5+127.5*(l-570)/10);
07 if (l>555)and(l<=570) then n:=round(127.5*(l-555)/15);
08 if (l>480)and(l<=495) then n:=round(127.5-127.5*(l-480)/15);
09 if (l>380)and(l<=480) then n:=round(255-127.5*(l-380)/100);
10 Red:=n;
11 end;
12 
13 function Blue(l:integer):byte;
14 var n:byte;
15 begin
16 if (l>380)and(l<=525) then n:=255;
17 if (l>555)and(l<=760) then n:=0;
18 if (l>540)and(l<=555) then n:=round(127.5-127.5*(l-540)/15);
19 if (l>525)and(l<=540) then n:=round(255-127.5*(l-525)/15);
20 Blue:=n;
21 end;
22 
23 function Green(l:integer):byte;
24 var n:byte;
25 begin
26 if (l>525)and(l<=580) then n:=255;
27 if (l>380)and(l<=495) then n:=0;
28 if (l>610)and(l<=760) then n:=round(63.5-63.5*(l-610)/150);
29 if (l>600)and(l<=610) then n:=round(127.5-63.5*(l-600)/10);
30 if (l>590)and(l<=600) then n:=round(190.5-63.5*(l-590)/10);
31 if (l>580)and(l<=590) then n:=round(255-63.5*(l-580)/10);
32 if (l>495)and(l<=510) then n:=round(127.5*(l-495)/15);
33 if (l>510)and(l<=525) then n:=round(127.5+127.5*(l-510)/15);
34 Green:=n;
35 end;
36 
37 procedure TForm1.FormDblClick(Sender: TObject);
38 var n,k:integer;
39 begin
40 for k:=20 to 360 do
41 for n:=760 to 1520 do
42 form1.Canvas.pixels[n-760,k]:= RGB(Red(round(n/2)),Green(round(n/2)),Blue(round(n/2)));
43 end;
44 
45 ...


Результаты показаны ниже:

Image

Применяя к построению определенные условия, можно получить спектр испускания атома водорода:

Image
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Sep 03, 2019 2:48 pm


Abstract: This target of this research is the design of a light absorbance measurement device for chemical education. In the present, the concentration of solution still cannot be measured. The measurement must be indirect and convert to concentration. In the chemical laboratory, a UV-spectrophotometer is used to measure the concentration of solution. It uses the light for checking the absorbance of solution by Beer-Lambert law. Although the UV-spectrophotometer is usually used in the chemical laboratories, it is very expensive. Therefore, it is not enough for students in the class. However, students do not use all of function of the UV-spectrophotometer in the chemical class. To achieve efficient chemical education, we decrease the inessential functions of the UV- spectrophotometer and develop a simple light absorbance measurement device to be proper for chemical education. The proposed device is cheaper and lighter than the commercial UV-spectrophotometer. Therefore, it can purchase for many students in class. Moreover, to improve understanding of students about light absorbance, the program collecting and calculating the data in Microsoft Excel is written.

Main Figures:
Image Image
Image Image
Image Image

References
[1] C. Areejitranusorn, Scientific Instrument, Bangkok, 2001.
[2] S. Bano, T. Altaf and S. Akbar, Microcontrolled based spectrophotometer using compact disc as diffraction grid, Proc. of SPIE - The International Society for Optical Engineering, pp.332-336, 2010.
[3] S. M. Liu, The development of a portable spectrophotometer for noncontact color measurement, IEEE Trans. Instrumentation and Measurement, vol.53, no.l, pp.155-162, 2004.
[4] T.-S. Yeh and S.-S. Tseng, A low cost LED based spectrometer, Journal of the Chinese Chemical Society, vol.53, pp.1067-1072, 2006.
[5] L. Tymecki, M. Pokrzywnicka and R. Koncki, Paired emitter detector diode (PEDD)-based photom¬etry - An alternative approach, The Analyst, vol.133, no.11, pp.1501-1504, 2008.
[6] S. J. Tavener and J. E. Thomas-oates, Build your own spectrophotometer, Education in Chemistry, pp.151-154, 2007.
[7] A. Teerasong, B. Panijpan and P. Ruenwangsa, Color and Light Absorbance Measurement, http://www.il.mahidol.ac.th/e-media/col ... index.html, 2016.
[8] M. Tiantong, Statistics and Research Methods in Information Technology, 2005.
[9] Smart Learning Team, Advance PIC microcontroller, Smart Learning, pp.406-410, 2012.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am


Return to Литература по теме

cron

User Menu

Login