2.

References
1. Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution
sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.
Sci. Total Environ. 2016, 566, 1552–1567. [CrossRef] [PubMed]
2. Zhao, Y.; Xia, X.H.; Yang, Z.F. Assessment of water quality in Baiyangdian Lake using multivariate statistical
techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [CrossRef]
3. Kim, C.; Eom, J.B.; Jung, S.; Ji, T. Detection of organic compounds in water by an optical absorbance method.
Sensors 2016, 16, 61. [CrossRef] [PubMed]
4. Xu, L.; Luo, Y. A new technology for water quality monitoring based on UV-visible spectrum analysis.
Spectrosc. Spectr. Anal. 2014, 34, 443–444.
5. Cao, H.; Qu, W.; Yang, X.; Jia, S.; Wang, C.; Lu, C. Research on rapid determination of organic matter
concentration in aquaculture water based on UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3015–3019.
6. Kus, M.; Ribbens, S.; Meynen, V.; Cool, P. Microvolume TOC analysis as useful tool in the evaluation of lab
scale photocatalytic processes. Catalysts 2013, 3, 74–87. [CrossRef]
7. Zhao, Y.; Li, Y.; Zhen, Y.; Fang, Y. A novel monitoring system for COD using optical ultraviolet absorption
method. Procedia Environ. Sci. 2011, 10, 2348–2353.
8. Tang, B.; Zhao, J.;Wei, B.; Jiang, S.; Luo, J. A method of optimizing the prediction model for the determination
of water COD by using UV-visible spectroscopy. China Environ. Sci. 2015, 35, 478–483.
9. Tang, B.; Wei, B.; Wu, D.; Mi, D.; Zhao, J.; Feng, P.; Jiang, S.; Mao, B. Experimental research of turbidity
influence on water quality monitoring of COD in UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3020–3024.
10. Wu, D.;Wei, B.; Feng, P.; Tang, B.; Liu, J. Denoising algorithm of UV-visible spectroscopy on water quality
detection based on two-dimension restructuring and dynamic pane. Spectrosc. Spectr. Anal. 2016, 36,
1044–1050.
11. Tang, B.;Wei, B.; Mao, B.; Zhao, J.; Feng, P. Noise analysis and denoising research on the UV-visible absorption
spectroscopy water quality detection system. Laser Optoelectron. Prog. 2014, 51, 197–203. [CrossRef]
12. Tang, G.; Wei, B.; Wu, D.; Feng, P.; He, P.; Liu, J.; Chen, M. Research on compression and reconstruction
algorithm of spectral data in water quality monitoring. Environ. Sci. Technol. 2016, 39, 6–10.
13. Wang, X.; Ma, J.;Wang, S.; Bi, D. Cluster-based dynamic energy management for collaborative target tracking
in wireless sensor networks. Sensors 2007, 7, 1193–1215. [CrossRef]
14. Wang, X.; Ma, J.; Wang, S. Parallel energy-efficient coverage optimization with maximum entropy clustering
in wireless sensor networks. J. Parallel Distrib. Comput. 2009, 69, 838–847. [CrossRef]
15. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantitative online analysis of
environmental trace heavy metals with total-reflection X-ray fluorescence. Sensors 2015, 15, 10650–10675.
[CrossRef] [PubMed]
16. Hou, D.; Zhang, J.; Chen, L.; Huang, P.; Zhang, G. Water quality analysis by UV-visible spectroscopy:
A review of methodology and application. Spectrosc. Spectr. Anal. 2013, 33, 1839–1844.
17. Zhao, Y.; Li, Y.; Guo, Y.; Gu, B.; Yang, Z. A novel technology for water quality testing based on UV spectral
analysis. Spectrosc. Spectr. Anal. 2012, 32, 1301–1305.
18. Liu, X.; Zhang, H. Rapid determination of COD in aquaculture water based on LSSVM with UV-visible
spectroscopy. Spectrosc. Spectr. Anal. 2014, 34, 2804–2807.
19. Wang, X.;Wang, S.; Ma, J. An improved particle filter for target tracking in sensor systems. Sensors 2007, 7,
144–156. [CrossRef]
Sensors 2018, 18, 606 19 of 19
20. Wang, X.; Ma, J.; Ding, L.; Bi, D. Robust forecasting for energy efficiency of wireless multimedia sensor
networks. Sensors 2007, 7, 2779–2807. [CrossRef] [PubMed]
21. Wang, X.; Ma, J.; Wang, S.; Bi, D. Time series forecasting energy-efficient organization of wireless sensor
networks. Sensors 2007, 7, 1766–1792. [CrossRef] [PubMed]
22. Taormina, R.; Chau, K.W.; Sivakumar, B. Neural network river forecasting through baseflow separation and
binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [CrossRef]
23. Gholami, V.; Chau, K.W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations
using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [CrossRef]
24. Wang,W.C.; Xu, D.M.; Chau, K.W.; Chen, S. Improved annual rainfall-runoff forecasting using PSO–SVM
model based on EEMD. J. Hydroinform. 2013, 15, 1377–1390. [CrossRef]
25. Zhang, S.; Chau, K.W. Dimension reduction using semi-supervised locally linear embedding for plant leaf
classification. In Emerging Intelligent Computing Technology and Applications; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 948–955.
26. Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks
coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [CrossRef]
27. Chau, K.W.; Wu, C.L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction.
J. Hydroinform. 2010, 12, 458–473. [CrossRef]
28. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantification of environmental trace
elements with total reflection X-ray fluorescence. In Proceedings of the IEEE 15th International Conference
on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015; pp. 1580–1586.
29. Wang, X.; Ma, J.; Wang, S.; Bi, D. Distributed particle swarm optimization and simulated annealing for
energy-efficient coverage in wireless sensor networks. Sensors 2007, 7, 628–648. [CrossRef]
30. Wang, X.; Ma, J.;Wang, S. Distributed energy optimization for target tracking in wireless sensor networks.
IEEE Trans. Mobile Comput. 2009, 9, 73–86. [CrossRef]
31. Wang, C.; Wu, F.; Zhao, H.; Lu, S. Temporal information entropy and its application in the detection of
spatio-temporal changes in vegetation coverage based on remote sensing images. Acta Ecol. Sin. 2017, 37,
7359–7367.
32. Al-Omari, A.I. Estimation of entropy using random sampling. J. Comput. Appl. Math. 2014, 261, 95–102.
[CrossRef]
33. Yentes, J.M.; Hunt, N.; Schmid, K.K. The appropriate use of approximate entropy and sample entropy with
short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [CrossRef] [PubMed]