It is currently Wed Nov 20, 2019 7:49 pm

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

Это Интересно!

by Admin » Mon Sep 24, 2018 11:01 am

Создан носимый сенсор из органической электроники

Исследователи из Университета Калифорнии (Беркли) разработали и опробовали новую технологию, которая в перспективе может найти применение для изготовления фитнесс-трекеров будущего, способных измерять концентрацию кислорода в крови.

Image
Исследователи из Беркли смогли сконструировать сенсор-пульсоксиметр, который состоит только из органических оптоэлектронных компонентов. Излучение красного и зеленого органических светоизлучающих диодов регистрируется органическим фотодиодом. Новое устройство измеряет содержание кислорода в артериальной крови и пульс с такой же точностью, как и коммерчески доступные пульсоксиметры с «кремниевой начинкой».


Как отмечает руководитель исследования Ана Ариас (Ana Arias), имеющиеся в настоящее время на рынке пульсоксиметры способны измерять скорость сердцебиения и степень насыщения крови кислородом, однако основой таких устройств является жесткая электроника обычной архитектуры, из-за чего их приходится закреплять на пальце или мочке уха, что вносит дискомфорт в их использование.

Перейдя от кремнийсодержащих полупроводников к органическим электронным компонентам, исследователи смогли создать тонкое, дешевое и эластичное устройство, которое можно носить на руке как силиконовый браслет или на голове – как часто использующуюся при тренировках повязку-бандаж. Инженеры сравнили точность измерений органического прототипа и серийного пульсоксиметра, и обнаружили, что новое устройство регистрирует физиологические параметры носителя так же точно и экспрессно.

Обычный, «кремниевый», пульсоксиметр использует светоизлучающие диоды, которые посылают красные и инфракрасные лучи через кончик пальца или мочку уха, а соответствующие сенсоры регистрируют интенсивность проходящего излучения, а соотношение прошедших через ткани ИК и красного световых потоков (они по-разному поглощаются артериальной и венозной кровью) позволяет говорить о концентрации кислорода в крови.

Для создания органических сенсоров Ариас и ее коллеги решили использовать светоизлучающие диоды, испускающие свет в зеленой и красной областях спектра. Излучение с этими параметрами также поглощается артериальной и венозной кровью по-разному и позволяет судить о насыщенности крови кислородом таким же образом, как и для «обычной электроники». Пульс носителя пульсоксиметра определяется по характеру течения артериальной крови.
Image


Как заявляет Ариас, было успешно продемонстрировано, что можно проводить измерения физиологических параметров человека, используя излучение с другими длинами волн. Поскольку органическая электроника отличается гибкостью и эластичностью, новые сенсоры идеально подходят к телу.

Еще одним преимуществом новой системы является ее дешевизна по сравнению с пульсоксиметрами на основе кремниевых полупроводников. Существующие в настоящее время пульсоксиметры не являются предметами индивидуального пользования (инвентарь спортзала или клиники), их приходится дезинфицировать после каждого применения. Стоимость же пульсоксиметра из органической электроники такова, что вполне возможно выбросить это устройство после тренировки или сеанса медицинской диагностики.


По материалам Nature Communications
Статья целиком.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Mar 21, 2019 8:22 pm

Кислоту превратили в выключатель цвета пористого материала

Image
Ichiro Hisaki et al./ Journal of the American Chemical Society


Исследователи из Университета Хоккайдо, Япония, и Университета Кастилии-Ла-Манчи, Испания, создали органический пористый материал, который может менять цвет при воздействии на его водородные связи паров кислоты. Предполагается, что этот метод можно будет применить для изготовления датчиков и сенсоров. Работа опубликована в Journal of the American Chemical Society.

Пористые органические материалы, меняющие цвет, могут использоваться для хранения и разделения газов и молекул, а также для работы органических электронных устройств и сенсоров. Ученые усовершенствовали пористую органическую структуру HOF. Структуры HOF (Hydrogen-bonded organic frameworks) состоят из органических молекул, связанных водородными связями. Благодаря такому строению HOF обладают гибкостью и возвращаются в исходное состояние при деформации. Однако, в то же время, хрупкость и неустойчивость к нагреву мешает максимально использовать потенциал материалов. Задачей японских и испанских исследователей было создание материала, который сохранял бы пористую структуру с соответствующими свойствами в условиях повышенной температуры.


Image
Цветовое "включение" и "выключение" пористого органического материала CPHATN-1a соляной кислотой
Ichiro Hisaki et al./ Journal of the American Chemical Society


Ичиро Хисаки и его коллеги разработали гексагональную каркасную структуру HOF под названием CPHATN-1a. Оказалось, что полученное вещество, помимо устойчивости к нагреванию, имеет еще одно полезное свойство — оно меняет цвет в зависимости от условий. При действии на CPHATN-1a раствора или паров соляной кислоты, соединение превращается из желтого в красно-бурый и возвращается в исходный цвет после удаления кислоты и нагрева. Полученное пористое вещество состоит из молекул ароматических углеводородов, в циклах которых некоторые атомы замещены на азот. Исследователи выяснили, что происходит сдвиг спектра поглощаемого материалом света, когда к атомам азота внутри каркаса присоединяются протоны из кислоты, и сдвиг в обратную сторону, когда протоны перестают взаимодействовать с азотом.


Image
Молекулярная структура CPHATN-1a. Атомы азота (голубой) – центры взаимодействия с протонами кислоты.
Ichiro Hisaki et al./ Journal of the American Chemical Society


В испытаниях на устойчивость CPHATN-1a показал хорошие результаты: материал сохраняет пористую структуру при нагревании до 359 градусов Цельсия и не разрушается в таких растворителях как хлороформ, этанол и вода.
Характеристики CPHATN-1a — устойчивость к нагреву и некоторым растворителям, способность менять цвет в присутствии кислот, а также пористое строение и гибкость — позволяют применять материал в многоразовых сенсорах кислот в атмосфере, которые будут включать и выключать соответствующий цвет.

Сенсор для других газов — водорода, кислорода и углекислого газа — ранее изобрели австралийские ученые, которые уже провели испытания внутри человеческого тела.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Jun 17, 2019 10:02 am

Балансирующего робота научили ездить во все стороны


Британский инженер разработал робота, имеющего конструкцию обратного маятника и способного передвигаться в любом направлении. В нем установлены две пары колес Илона, позволяющие двигаться в любом направлении без поворота колес. Разработка была представлена на конференции ICRA 2019.

Представленный робот по сути представляет частный случай обратного маятника. В такой конструкции, в отличие от обычного маятника, точка опоры находится ниже центра масс, из-за чего, будучи в вертикальном положении, он всегда нестабилен. Для поддержания обратного маятника в вертикальном положении точку его опоры необходимо постоянно смещать. Этот принцип часто применяется на практике в различных устройствах, к примеру, Segway и других гироскутерах. Кроме того, похожие принципы управления используются в ракетах, в которых двигатели, создающие реактивную тягу, находятся ниже центра масс и тем самым вызывают нестабильность.

Инженер Мэттью Уотсон (Matthew Watson) из Шеффилдского университета разработал робота, который, в отличие от гироскутеров, может двигаться в любую сторону без поворота корпуса. Такие способности робот имеет благодаря применению колес Илона. Они были разработаны в 1970-х годах инженером Бенгтом Илоном и наиболее часто применяются в вилочных погрузчиках на складах. Каждое колесо состоит из круглого основания и закрепленных под углом роликов. Меняя крутящий момент на разных колесах машина может сдвигаться в нужном направлении, не поворачивая корпус.

Создав модель, связывающую параметры вращения колес и параметры движения всей конструкции, инженеры создали алгоритм управления роботом, позволяющий ему передвигаться в любом направлении. На ролике можно видеть, что робот способен передвигаться даже по сложным траекториям, к примеру, совмещая поступательное движение с вращательным.

https://ieeexplore.ieee.org/abstract/document/8349923

<< Предыдущая страница


На главную
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

Previous

Return to Это интересно

cron

User Menu

Login