It is currently Tue Oct 16, 2018 9:19 pm

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

Вольтамперометрия

Подборка научных статей

by Admin » Thu Jun 21, 2018 12:12 pm

21. X. Pei, W. Kang, W. Yue, A. Bange, W. Heineman, and I. Papautsky. Disposable Copper-Based Electrochemical Sensor for Anodic Stripping Voltammetry // Anal. Chem. – 2014. Vol.86. P. 4893−4900.

Abstract: In this work, we report the first copper-based pointof care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-ofcare system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 μA/μM in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time, and high accuracy at low concentrations of analyte.

Main Figures:
Image
Image

Image

References
(1) Smith, J.; Butrimovitz, G.; Purdy, W. Clin. Chem. 1979, 25,
1487−1491.

(2) Jenner, G.; Longerich, H.; Jackson, S.; Fryer, B. Chem. Geol. 1990,
83, 133−148.

(3) Vallee, B. L.; Falchuk, K. H. Physiol. Rev. 1993, 73, 79−118.

(4) Tapiero, H.; Tew, K. D. Biomed. Pharmacother. 2003, 57, 399−
411.

(5) Wong, H. R.; Cvijanovich, N.; Allen, G. L.; Lin, R.; Anas, N.;
Meyer, K.; Freishtat, R. J.; Monaco, M.; Odoms, K.; Sakthivel, B. Crit.
Care Med. 2009, 37, 1558.

(6) Shanley, T. P.; Cvijanovich, N.; Lin, R.; Allen, G. L.; Thomas, N.
J.; Doctor, A.; Kalyanaraman, M.; Tofil, N. M.; Penfil, S.; Monaco, M.
Mol. Med. 2007, 13, 495.

(7) Cvijanovich, N.; Shanley, T. P.; Lin, R.; Allen, G. L.; Thomas, N.
J.; Checchia, P.; Anas, N.; Freishtat, R. J.; Monaco, M.; Odoms, K.
Physiol. Genomics 2008, 34, 127−134.

(8) Bhutta, Z. A.; Bird, S. M.; Black, R. E.; Brown, K. H.; Gardner, J.
M.; Hidayat, A.; Khatun, F.; Martorell, R.; Ninh, N. X.; Penny, M. E.
Am. J. Clin. Nutr. 2000, 72, 1516−1522.

(9) Ruel, M. T.; Rivera, J. A.; Santizo, M.; Lönnerdal, B.; Brown, K.
H. Pediatrics 1997, 99, 808−813.

(10) Sazawal, S.; Black, R. E.; Ramsan, M.; Chwaya, H. M.; Dutta, A.;
Dhingra, U.; Stoltzfus, R. J.; Othman, M. K.; Kabole, F. M. Lancet
2007, 369, 927−934.

(11) Nations, S.; Boyer, P.; Love, L.; Burritt, M.; Butz, J.; Wolfe, G.;
Hynan, L.; Reisch, J.; Trivedi, J. Neurology 2008, 71, 639−643.

(12) Cuajungco, M. P.; Fagét, K. Y. Brain Res. Rev. 2003, 41, 44−56.

(13) Hotz, C.; Peerson, J. M.; Brown, K. H. Am. J. Clin. Nutr. 2003,
78, 756−764.

(14) Jothimuthu, P.; Wilson, R. A.; Herren, J.; Haynes, E. N.;
Heineman, W. R.; Papautsky, I. Biomed. Microdevices 2011, 13, 695−
703.

(15) Jothimuthu, P.; Wilson, R. A.; Herren, J.; Pei, X.; Kang, W.;
Daniels, R.; Wong, H.; Beyette, F.; Heineman, W. R.; Papautsky, I.
Electroanalysis 2013, 25, 401−407.

(16) Kang, W.; Pei, X.; Yue, W.; Bange, A.; Heineman, W. R.;
Papautsky, I. Electroanalysis 2013, 25, 2586−2594.

(17) Ives, D. J. G.; George, J. J. In Reference Electrodes: Theory and
Practice; Academic Press: Amsterdam, 1961; pp 322−392.

(18) Kruusma, J.; Banks, C. E.; Nei, L.; Compton, R. G. Anal. Chim.
Acta 2004, 510, 85−90.

(19) Kruusma, J.; Tomčík, P.; Banks, C. E.; Compton, R. G.
Electroanalysis 2004, 16, 852−859.

(20) Ghaedi, M.; Shokrollahi, A.; Niknam, K.; Niknam, E.; Derki, S.;
Soylak, M. J. AOAC Int. 2009, 92, 907−913.

(21) Xia, Y.; Whitesides, G. M. Annu. Rev. Mater. Sci. 1998, 28, 153−
184.

(22) Pei, X.; Kang, W.; Yue, W.; Bange, A.; Wong, H. R.; Heineman,
W. R.; Papautsky, I. Proc. SPIE 2012, 8251, 82510K-1−82510K-8.

(23) Suzuki, H.; Hirakawa, T.; Sasaki, S.; Karube, I. Sens. Actuators, B
1998, 46, 146−154.

(24) Matsumoto, T.; Ohashi, A.; Ito, N. Anal. Chim. Acta 2002, 462,
253−259.

(25) Suzuki, H.; Shiroishi, H.; Sasaki, S.; Karube, I. Anal. Chem. 1999,
71, 5069−5075.

(26) Polk, B. J.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.;
Gaitan, M. Sens. Actuators, B 2006, 114, 239−247.

(27) Genuis, S. J.; Birkholz, D.; Rodushkin, I.; Beesoon, S. Arch.
Environ. Contam. Toxicol. 2011, 61, 344−357.

(28) Yosypchuk, B.; Novotný, L. Talanta 2002, 56, 971−976.

(29) Piech, R.; Kubiak, W. W. Electrochim. Acta 2007, 53, 584−589.

(30) Cotton, F. A., Wilkinson, G. In Advanced Inorganic Chemistry: A
Comprehensive Text, 4th ed.; Wiley: Hoboken, NJ, 1980; pp 589−616.

(31) Kefala, G.; Economou, A.; Voulgaropoulos, A. Analyst 2004,
129, 1082−1090.

(32) Demetriades, D.; Economou, A.; Voulgaropoulos, A. Anal. Chim.
Acta 2004, 519, 167−172.

(33) Costa, D. A.; Takeuchi, R. M.; Santos, A. L. Int. J. Electrochem.
Sci. 2011, 6, 6410−6423.

(34) Hambidge, K. M.; Krebs, N. F. J. Nutr. 2007, 137, 1101−1105.

(35) Roda, S. M.; Greenland, R.; Bornschein, R.; Hammond, P. Clin.
Chem. 1988, 34, 563−567.

(36) Wang, F.; Chmil, C.; Pierce, F.; Ganapathy, K.; Gump, B. B.;
MacKenzie, J. A.; Mechref, Y.; Bendinskas, K. J. Chromatogr., B 2013,
934, 26−33.

(37) Yue, W.; Bange, A.; L Riehl, B.; M Johnson, J.; Papautsky, I.; R
Heineman, W. Electroanalysis 2013, 25, 2259−2267.

(38) Kumar, M. P.; Mouli, P. C.; Reddy, S. J.; Mohan, S. V. Anal. Lett.
2005, 38, 463−475.

(39) Barany, E.; Bergdahl, I. A.; Schütz, A.; Skerfving, S.; Oskarsson,
A. J. Anal. At. Spectrom. 1997, 12, 1005−1009.

(40) Pauliukaitė, R.; Brett, C. Electroanalysis 2005, 17, 1354−1359.

(41) Cesarino, I.; Gouveia-Caridade, C.; Pauliukaitė, R.; Cavalheiro,
E. T.; Brett, C. Electroanalysis 2010, 22, 1437−1445.

(42) Granado Rico, M. Á; Olivares-Marín, M.; Gil, E. P.
Electroanalysis 2008, 20, 2608−2613.

(43) Rico, M. Á G.; Olivares-Marín, M.; Gil, E. P. Talanta 2009, 80,
631−635.

(44) Economou, A.; Voulgaropoulos, A. Electroanalysis 2010, 22,
1468−1475.

(45) Guo, Z.; Feng, F.; Hou, Y.; Jaffrezic-Renault, N. Talanta 2005,
65, 1052−1055.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Jun 25, 2018 8:45 am

22. Sun A., Wambach T., Venkatesh A. G. A Low-Cost Smartphone-Based Electrochemical Biosensor for Point-of-Care Diagnostics // IEEE Biomed Circuits Syst Conf. – 2014. 312–315. doi:10.1109/BioCAS.2014.6981725.

Abstract: This paper describes the development of a smartphone-based electrochemical biosensor module. The module contains a low power potentiostat that interfaces and harvests power from a smartphone through the phone’s audio jack. A prototype with two different potentiostat designs was constructed and used to conduct proof of concept cyclic voltammetry experiments with potassium ferro-/ferricyanide (K4[Fe(CN)6] / K3[Fe(CN)6]) in a side-by-side comparison with a laboratory grade instrument. Results show that the module functions within the available power budget and that the recovered voltammogram data matches well with the data from an expensive bench top tool. Excluding the loses from supply rectification and regulation, the module consumes either 5.7 mW or 4.3 mW peak power, depending on which of the two discussed potentiostat designs is used. At single quantity pricing, the hardware for the prototype device costs less than $30.

Main Figures:
Image

Image

Image

References
1. [Accessed: 30-May-2014] Smartphone Users Worldwide Will Total 1.75 Billion in 2014. [Online]. Available: http://www.emarketer.com/Article/Smartp ... 14/1010536
2. [Accessed: 31-May-2014] Distributed Health Open Health Stack. [Online]. Available: http://dhlabs.calit2.net/open-health-stack/
3. Rowe AA, Bonham AJ, White RJ, Zimmer MP, Yadgar RJ, Hobza TM, Honea JW, Ben-Yaacov I, Plaxco KW. CheapStat: An Open-Source, ‘Do-It-Yourself’ Potentiostat for Analytical and Educational Applications. PLoS ONE. Sep.2011 6(9):e23783. [PubMed: 21931613]
4. Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. Jul; 2013 13(15):2950–2955. [PubMed: 23689554]
5. Kuo Y-S, Schmid T, Dutta P. Hijacking power and bandwidth from the mobile phone’s audio interface. Proc Int Symp Low Power Electron Des. 2010
6. Silicon Labs, Appl. Note AN0054
7. Bard, Allen J. Electrochemical Methods Fundamentals and Applications. 2. Wiley; 2001. Electrochemical Instrumentation; p. 632-658.
8. Bandyopadhyay, A.; Mulliken, G.; Cauwenberghs, G.; Thakor, N. VLSI potentiostat array for distributed electrochemical neural recording. IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002; 2002. p. II–740-II–743.
9. Busoni L, Carlà M, Lanzi L. A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev Sci Instrum. Apr.2002 73(4):1921.
10. Nazari MH, Mazhab-Jafari H, Leng L, Guenther A, Genov R. CMOS Neurotransmitter Microarray: 96-Channel Integrated Potentiostat With On-Die Microsensors. IEEE Trans Biomed Circuits Syst. Jun; 2013 7(3):338–348. [PubMed: 23853333]
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Sun Jul 08, 2018 7:41 am

23. Bezuidenhout P., Smith S., Land K. A Low-Cost Potentiostat for Point-of-Need Diagnostics. / Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa. 2017.

Abstract: The work presented details the development of a lowcost potentiostat, with the aim of creating an ink-jet printed hybrid paper-based low-cost sensing system for rapid water quality monitoring. Potentiostats exhibit high sensitivities and can be used for a variety of applications. In this application, they use electrochemical techniques to detect heavy metals via stripping analysis. The potentiostat front-end, consisting of an LMP91000 sensing chip, was designed and manufactured on a printed circuit board (PCB) and compared to a laboratory-based potentiostat using cyclic voltammetry performed using an 80 μl sample of 5 mM ferriferrocyanide dropped onto a commercial screen-printed electrode. The results obtained from the PCB potentiostat are comparable to those obtained using the development board and the laboratorybased potentiostat. The results highlight the functionality of a lowcost point-of-need potentiostat that can be used for environmental monitoring as well as the feasibility of transferring the design to a paper substrate.

Main Figures:
Image

Image

Image

Image

References
[1] IDTechEx Raghu Das, Printed, flexible and hybrid electronics: hot
trends and market outlook, 2017.
[2] A.P.F. Turner, "The Paper Potentiostat," in 4th International
Conference on Biosensing Technology, Lisbon, Portugal, 2015.
[3] J. Kim, I. Jeerapan, S. Imani, T. Cho, A. Bandodkar, S. Cinti, P.
Mercier and J. Wang, "Noninvasive alcohol monitoring using a
wearable tattoo-based iontophoretic-biosensing system," ACS Sensors,
p. 1011−1019, July 2016.
[4] P.B. Tchounwou , C.G. Yedjou, A.K. Patlolla and D.J. Sutton,
"Heavy Metals Toxicity and the Environment," National Institute of
Health Public access, Aug. 2012.
[5] D. Mabey, R.W. Peeling, A. Ustianowski and M. Perkins,
"Diagnostics for the developing world," Nat. Rev., vol. 2, no. 3, pp.
231-240, 2004.
[6] S. Smith, P. Bezuidenhout, M. Mbanjwa, H. Zheng, M. Conning,
N. Palaniyandy, K. Ozoemena and K. Land, "Development of paperbased
electrochemical sensors for water quality monitoring," Fourth
Conference on Sensors, MEMS and Electro-Optic Systems,
International Society for Optics and Photonics, February 2017.
[7] P.H. Bezuidenhout K.J. Land and T-H. Joubert, "Integrating
integrated circuit chips on paper substrates using ink-jet printed
electronics," in 17th Annual International Conference of the Rapid
product development association of South-Africa, VUT Southern
Gauteng Science and Technology Park, 2016.
[8] P. Bezuidenhout, K. Land and T-H. Joubert, "A low-power CMOS
operational amplifier IC for a heterogeneous paper-based potentiostat,"
in Fourth Conference on Sensors, MEMS and Electro-Optic Systems.
International Society for Optics and Photonics, 2017, pp. 100360P-
100360P.
[9] J. Miettinen, V. Pekkanen, K. Kaija, P. Mansikkamaki, J.
Mantysalo, M. Mantysalo, J. Niittynen, J. Pekkanen, T. Saviauk and Ri.
Ronkka, "Inkjet printed System-in-Package design and manufacturing,"
Microelectronics Journal, vol. 39, pp. 1740–1750, April 2008.
[10] Raspberry Pi. (2017, April) Raspberry Pi. [Online].
https://www.raspberrypi.org/
[11] Arduino. (2017, April) Arduino. [Online]. https://www.arduino.cc/
[12] C. Harnett, "Open source hardware for instrumentation and
measurement," IEEE Instrumentation & Measurement Magazine, vol.
11, pp. 34 – 38, 2011.
[13] N. Norena, A. Kaushik, S. Bhansali and A. Cruz, "A low-cost
miniaturised potentiostat for point-of-care diagnosis," Biosensors and
Bioelectronics, vol. 62, pp. 249-254, 2014.
[14] C-C Chen and G-N Sung, W-C Chen, C-T Kuo, J-J Chue, C-M
Wu, C-M Huang, "A wireless and batteryless intelligent carbon
monoxide sensor," Sensors, vol. 16, pp. 1568-1579, September 2016.
[15] P. Mostafalu, W. Lenk, M.R. Dokmeci, B. Ziaie, A.
Khademhosseini and S.R. Sonkusale, "Wireless flexible smart
bandage for continuous monitoring of wound oxygenation," IEEE
Transactions on biomedical circuits and systems, vol. 9, no. 5, pp.
670-677, October 2015.
[16] F. Basilotta, S. Riario, F. Stradolini, I. Taurino, D. Demarchi, G.
De Micheli and S. Carrara, "Wireless monitoring in intensive care
units by a 3D-Printed system with embedded electronic," IEEE,
2015.
[17] G. Jasinski, A. Strzelczyk and P. Koscinski, "Low cost
electrochemical sensor module for measurement of gas
concentration," in 39th International Microelectronics and
Packaging IMAPS Poland 2015 Conference, 2015.
[18] M. B. Marinov, I. Topalov, E. Gieva and G. Nikolov, "Air
quality monitoring in urban environments," in 39th International
Spring Seminar on Electronics Technology (ISSE), 2016.
[19] A. Kaushik, A. Yndart, R. Dev Jayant, V. Sagar, V. Atluri, S.
Bhansali and M. Nair, "Electrochemical sensing method for point-ofcare
cortisol detection in human immunodeficiency virus-infected
patients," International Journal of Nanomedicine, vol. 10, pp. 677–
685, 2015.
[20] Z. Zou, A. Jang, E. McKnight, P.-M. Wu, J. Do, P. Bishop and
C. Ahn, "Environmentally friendly disposable sensors with
microfabricated on-chip planar bismuth electrode for in situ heavy
metal ions measurement," Sensors and Actuators B: Chemical, vol.
134, pp. 18–24, Apr. 2008.
[21] Princeton applied research, A Review of Techniques for
Electrochemical Analysis, Application Note E-4.
[22] MikMo. (2017, April) Gobetwino. [Online].
http://mikmo.dk/gobetwinodownload.html
[23] Texas Instruments, LMP91000EVM User’s Guide, 2012.
[24] Altium. (2017, April) Altium. [Online]. http://www.altium.com/
[25] P. Bezuidenhout and J. Schoeman, T-H. Joubert, "The Design
and Manufacturing Considerations of a Paper-Based E. coli
Biosensor," in International Conference on Competitive
Manufacturing, Stellenbosch, 2016.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Jul 09, 2018 2:22 pm

24.Ma W.J., Luo C.H., Lin J.L., Chou S.H., Chen P.H., Syu M.J., Kuo S.H. and Lai S.C. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations // Sensors. – 2016. Vol. 16. 474; doi:10.3390/s16040474.

Abstract: This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16  104 to 3.16  102 M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R2 = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications.

Main Figures:
Image

Image

Image

Image

Image



References
1. Aronson, D.; Mittleman, M.A.; Burger, A.J. Elevated blood urea nitrogen level as a predictor of mortality in
patients admitted for decompensated heart failure. Am. J. Med. 2004, 116, 466–473. [CrossRef] [PubMed]
2. Ronco, C.; Bellomo, R.; Homel, P.; Brendolan, A.; Dan, M.; Piccinni, P.; Greca, G.L. Effect of different doses in
continuous veno-venous hemofiltration on outcomes of acute renal failure: A prospective randomized trial.
Lancet 2000, 356, 26–30. [CrossRef]
3. Tiwari, A. A novel nanocomposite matrix based on silylated chitosan and multiwall carbon nanotubes for
the immobilization of urease. J. Inorg. Organomet. Polym. Mater. 2009, 19, 361–366. [CrossRef]
4. Bozgeyik, I.; Senel, M.; Cevik, E.; Abasıyanık, M.F. A novel thin film amperometric urea biosensor based on
urease-immobilized on poly (N-glycidylpyrrole-co-pyrrole). Curr. Appl. Phys. 2011, 11, 1083–1088. [CrossRef]
5. Ho, W.O.; Krause, S.; McNeil, C.J.; Pritchard, J.A.; Armstrong, R.D.; Athey, D.; Rawson, K.
Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance
Measurement of Enzyme-Catalyzed Polymer Transformation. Anal. Chem. 1999, 71, 1940–1946. [CrossRef]
[PubMed]
6. Gau, J.J.; Lan, E.H.; Dunn, B.; Ho, C.M.; Woo, J.C.S. A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens. Bioelectron. 2001, 16, 745–755. [CrossRef]
7. Chang, C.W.; Maduraiveeran, G.; Xu, J.C.; Hunter, G.W.; Dutta, P.K. Design, fabrication, and testing of
MEMS-based miniaturized potentiometric nitric oxide sensors. Sens. Actuators B Chem. 2014, 204, 183–189.
[CrossRef]
8. Kudo, H.; Sawada, T.; Kazawa, E.; Yoshida, H.; Iwasaki, Y.; Mitsubayashi, K. A Flexible and wearable glucose
sensor based on functional polymers with Soft-MEMS techniques. Biosens. Bioelectron. 2006, 22, 558–562.
[CrossRef] [PubMed]
9. Cha, J.; Han, J.I.; Choi, Y.; Yoon, D.S.; Oh, K.W. DNA hybridization electrochemical sensor using conducting
polymer. Biosens. Bioelectron. 2003, 18, 1241–1247. [CrossRef]
10. Eggenstein, C.; Borchardt, M.; Diekmann, C.; Gründig, B.; Dumschat, C.; Cammann, K.; Knoll, M.; Spener, F.
A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer.
Biosens. Bioelectron. 1999, 14, 33–41. [CrossRef]
11. Yin, L.T.; Lin, Y.T.; Leu, Y.C.; Hu, C.Y. Enzyme immobilization on nitrocellulose film for pH-EGFET type
biosensors. Sens. Actuators B Chem. 2010, 148, 207–213. [CrossRef]
12. Senillou, A.; Jaffrezic-Renault, N.; Martelet, C.; Cosnier, S. A miniaturized urea sensor based on the
integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor
in a single chip. Talanta 1999, 50, 219–226. [CrossRef]
13. Koncki, R.; Radomska, A.; Gla˛b, S. Potentiometric determination of dialysate urea nitrogen. Talanta 2000,
52, 13–17. [CrossRef]
14. Jin, J.H.; Pake, S.H.; Lee, C.W.; Min, N.K.; Hong, S.I. Fabrication of amperometric urea sensor based on
nano-porous silicon technology. J. Korean Phys. Soc. 2003, 42, S735–S738.
15. Singh, M.; Verma, N.; Garg, A.K.; Redhu, N. Urea biosensors. Sens. Actuators B Chem. 2008, 134, 345–351.
[CrossRef]
16. Syu, M.J.; Chang, Y.S. Ionic effect investigation of a potentiometric sensor for urea and surface morphology
observation of entrapped urease/polypyrrole matrix. Biosens. Bioelectron. 2009, 24, 2671–2677. [CrossRef]
[PubMed]
17. Herlem, B.G.; Lakard, S.; Antoniou, A.; Fahys, B. Urea potentiometric biosensor based on modified electrodes
with urease immobilized on polyethylenimine films. Biosens. Bioelectron. 2004, 19, 1641–1647.
18. Lakard, B.; Magnin, D.; Deschaume, O.; Vanlancker, G.; Glinel, K.; Demoustier-Champagne, S.; Nysten, B.;
Jonas, A.M.; Bertrand, P.; Yunus, S. Urea potentiometric enzymatic biosensor based on charged biopolymers
and electrodeposited polyaniline. Biosens. Bioelectron. 2011, 26, 4139–4145. [CrossRef] [PubMed]
19. Das, G.; Yoon, H.H. Amperometric urea biosensors based on sulfonated graphene/polyaniline
nanocomposite. Int. J. Nanomed. 2015, 10, 55–66.
20. Jia, W.Z.; Su, L.; Lei, Yu. Pt nanoflower/polyaniline composite nanofibers based urea biosensor.
Biosens. Bioelectron. 2011, 30, 158–164. [CrossRef] [PubMed]
21. Pan, C.W.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Solid-state urea biosensor based on the differential method. IEEE Sens. J. 2006, 6, 269–275.
22. Slaugther, G. A gold interdigitated microelectrodes fabricated on polyhydroxybutyrate substrate for the
determination of urea using impedimetric measurements. IEEE Sens. J. 2012, 12, 821–826. [CrossRef]
23. Laurinavicius, V.; Razumiene, J.; Gureviciene, V. Bioelectrochemical conversion of urea on carbon black
electrode and application. IEEE Sens. J. 2013, 13, 2208–2213. [CrossRef]
24. Chou, N.H.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Measurement and comparison of potentiometric selectivity
coefficients of urea biosensors based on ammonium ion-selective electrodes. IEEE Sens. J. 2005, 5, 1362–1368.
[CrossRef]
25. Mahadeva, S.K.; Kim, J. Porous tin-oxide-coated regenerated cellulose as disposable and low-cost alternative
transducer for urea detection. IEEE Sens. J. 2013, 13, 2223–2228. [CrossRef]
26. Li, L.;Wang, Y.Q.; Pan, L.J.; Shi, Y.; Cheng,W.; Shi, Y.; Yu, G.H. A nanostructured conductive hydrogels-based
biosensor platform for human metabolite detection. Nano Lett. 2015, 15, 1146–1151. [PubMed]
27. Li, L.; Shi, Y.; Pan, L.J.; Shi, Y.; Yu, G.H. Rational design and applications of conducting polymer hydrogels
as electrochemical biosensors. J. Mater. Chem. B. 2015, 3, 2920–2930. [CrossRef]
28. Zhao, Y.; Liu, B.; Pan, L.J.; Yu, G.H. 3D nanostructured conductive polymer hydrogels for high-performance
electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870. [CrossRef]
29. Vering, T.; Adam, S.; Drewer, H.; Dumschat, C.; Steinkuhl, R.; Schulze, A.; Siegel, E.G.; Knoll, M.
Wearable microdialysis system for continuous in vivo monitoring of glucose. Analyst 1998, 123, 1605–1609.
[CrossRef] [PubMed]
30. Tang, Z.P.; Du, X.G.; Louie, R.; Kost, G.J. Effect of drugs on glucose measurements with handheld glucose
meters and a portable glucose analyzer. Am. J. Clin. Pathol. 2000, 113, 75–86. [CrossRef] [PubMed]
31. Ahmadi, M.M.; Jullien, G.A. A wireless-implantable microsystem for continuous blood glucose monitoring.
IEEE Trans. Biomed. Circuits Syst. 2009, 3, 169–180. [CrossRef] [PubMed]
32. Lucani, D.; Cataldo, G.; Cruz, J.; Villegas, G.;Wong, S. A portable ECG monitoring device with bluetooth and
holter capabilities for telemedicine applications. In Proceedings of the 28th Annual International Conference
on Engineering in Medicine and Biology Society, New York, NY, USA, 29–30 August 2006; pp. 5244–5247.
33. Wen, C.; Yeh, M.F.; Chang, K.C.; Lee, R.G. Real-time ECG tele-monitoring system design with mobile phone
platform. Measurement 2008, 41, 463–470. [CrossRef]
34. Jaw, F.S.; Tseng, Y.L.; Jang, J.K. Modular design of a long-term portable recorder for physiological signals.
Measurement 2010, 43, 1363–1368. [CrossRef]
35. Chou, N.H.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Study on the disposable urea biosensors based on PVC-COOH
membrane ammonium ion-selective electrodes. IEEE Sens. J. 2006, 6, 262–268. [CrossRef]
36. Sekhar, P.K.; Brosha, E.L. Trace detection of 2, 4, 6-trinitrotoluene using electrochemical gas sensor.
IEEE Sens. J. 2015, 15, 1624–1629. [CrossRef]
37. Li, H.; Mu, X.; Yang, Y.; Mason, A.J. Low power multimode electrochemical gas sensor array system for
wearable health and safety monitoring. IEEE Sens. J. 2014, 14, 3391–3399. [CrossRef]
38. Nandakumar, V.; Bishop, D.; Alonas, E.; LaBelle, J.; Joshi, L.; Alford, T.L. A Low-Cost Electrochemical
Biosensor for Rapid Bacterial Detection. IEEE Sens. J. 2011, 11, 210–216. [CrossRef]
39. Kim, C.S.; Lee, C.H.; Fiering, J.O.; Ufer, S.; Scarantino, C.W.; Nagle, H.T. Manipulation of microenvironment
with a built-in electrochemical actuator in proximity of a dissolved oxygen microsensor. IEEE Sens. J. 2004,
4, 568–575. [CrossRef]
40. Wang, W.S.; Huang, H.Y.; Chen, S.C.; Ho, K.C.; Lin, C.Y.; Chou, T.C.; Wu, C.H.; Wang, W.F.; Wu, C.F.;
Luo, C.H. Real-time telemetry system for amperometric and potentiometric electrochemical sensor. Sensors
2011, 11, 8593–8610. [CrossRef] [PubMed]
41. Chung, W.Y.; Yeh, M.H.; Chen, J.C.; Hsiung, S.K. Design of a low-voltage instrumentation amplifier for
enzyme-extended-gate field effect transistor based urea sensor application. In Proceedings of the First
IEEE International Workshop on Electronic Design, Test and Applications, Christchurch, New Zealand,
29–31 January 2002; pp. 177–180.
42. Wang, J.Q.; Chou, J.C.; Sun, T.P.; Hsiung, S.K.; Hsiung, G.B. pH-based potentio-metrical flow injection
biosensor for urea. Sens. Actuators B Chem. 2003, 91, 5–10. [CrossRef]
43. Ma, W.J.; Huang, H.Y.; Luo, C.H. A low power analog front-end (AFE) circuit dedicated for driving
bio-electrochemical sensors and peripheral device. In Proceedings of the IEEE Biomedical Circuits and
Systems (BioCAS) Conference, Hsinchu, Taiwan, 28–30 November 2012; pp. 120–123.
44. Lambrechts, M.; Sansen, W. Biosensors: Microelectrochemical. Devices, 1st ed.; Institute of Physics Publishing:Bristol, UK, 1992.
45. Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.;Wiley: Hoboken,
NJ, USA, 2001.
46. Texas Instrument. MASP430F149 Texas Instrument Mixed Signal Microcontroller, 2011. Available online:
http://www.ti.com/lit/ds/symlink/msp430f149 (accessed on 18 November 2015).
47. Huang, C.J.; Lin, J.L.; Chen, P.H.; Syu, M.J.; Lee, G.B. A multi-functional electrochemical sensing system
using micro-fluid technology for detection of urea and creatinine. Electrophoresis 2011, 32, 931–938. [CrossRef][PubMed]
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Jul 16, 2018 11:25 am

25. Nejd L., Kynicky J., Brtnicky M., Vaculovicova M. and Adam V. Amalgam Electrode-Based Electrochemical Detector for On-Site Direct Determination of Cadmium(II) and Lead(II) from Soils // Sensors 2017, 17, 1835; doi:10.3390/s17081835.

Abstract: Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II) and Pb(II) in environmental samples (soils and wastewaters) by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm) and a portable computer. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II) and Pb(II) in this area were below the global average. The obtained values were verified (correlated) by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample) with direct analysis of turbid samples (soil leach) in a 2 M HNO3 environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment.

Main Figures:
Image

References
1. Sun, H.F.; Li, Y.H.; Ji, Y.F.; Yang, L.S.; Wang, W.Y.; Li, H. Environmental contamination and health hazard of
lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China. Trans. Nonferr.
Met. Soc. China 2010, 20, 308–314. [CrossRef]
2. Petroczi, A.; Naughton, D.P. Mercury, cadmium and lead contamination in seafood: A comparative study
to evaluate the usefulness of Target Hazard Quotients. Food Chem. Toxicol. 2009, 47, 298–302. [CrossRef]
[PubMed]
3. Zhang, R.; Rahman, S.; Vance, G.F. Munn LC Geostatistical analyses of trace-elements in soils and plants.
Soil Sci. 1995, 159, 383–390. [CrossRef]
4. Nejdl, L.; Nguyen, H.V.; Richtera, L.; Krizkova, S.; Guran, R.; Masarik, M.; Hynek, D.; Heger, Z.; Lundberg, K.;
Erikson, K.; et al. Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis 2015,
36, 1894–1904. [CrossRef] [PubMed]
5. Lamble, K.J.; Hill, S.J. Microwave digestion procedures for environmental matrices. Analyst 1998, 123.
[CrossRef]
6. Alves, G.M.S.; Magalhaes, J.; Salaun, P.; van den Berg, C.M.G.; Soares, H. Simultaneous electrochemical
determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold
microwire electrode. Anal. Chim. Acta 2011, 703, 1–7. [CrossRef] [PubMed]
7. Nejdl, L.; Ruttkay-Nedecky, B.; Kudr, J.; Kremplova, M.; Cernei, N.; Prasek, J.; Konecna, M.; Hubalek, J.;
Zitka, O.; Kynicky, J.; et al. Behaviour of Zinc Complexes and Zinc Sulphide Nanoparticles Revealed by
Using Screen Printed Electrodes and Spectrometry. Sensors 2013, 13, 14417–14437. [CrossRef] [PubMed]
8. Hynek, D.; Krejcova, L.; Sochor, J.; Cernei, N.; Kynicky, J.; Adam, V.; Trnkova, L.; Hubalek, J.; Vrba, R.;
Kizek, R. Study of Interactions between Cysteine and Cadmium(II) Ions using Automatic Pipetting System
off-line Coupled with Electrochemical Analyser Dedicated United Nation Environment Program: Lead and
Cadmium Initiatives. Int. J. Electrochem. Sci. 2012, 7, 1802–1819.
9. Barcelo-Quintal, M.H.; Manzanilla-Cano, J.A.; Reyes-Salas, E.O.; Flores-Rodriguez, J. Implementation of
a differential pulse anodic stripping voltammetry (DPASV) at a hanging mercury drop electrode (HMDE)
procedure for the analysis of airborne heavy metals. Anal. Lett. 2001, 34, 2349–2360. [CrossRef]
10. Fernandez-Bobes, C.; Fernandez-Abedul, M.T.; Costa-Garcia, A. Anodic stripping of heavy metals using a
hanging mercury drop electrode in a flow system. Electroanalysis 1998, 10, 701–706. [CrossRef]
11. Fogg, A.G.; Ismail, R.; Yusoff, A.; Ahmad, R.; Banica, F.G. Cathodic stripping voltammetric determination
at a hanging mercury drop electrode of the environmental heavy metal precipitant trimercapto-s-triazine
(TMT). Talanta 1997, 44, 497–500. [CrossRef]
12. Economou, A.; Fielden, P.R. Mercury film electrodes: Developments, trends and potentialities for
electroanalysis. Analyst 2003, 128, 205–212. [CrossRef] [PubMed]
13. McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108,
2646–2687. [CrossRef] [PubMed]
14. Oyama, M. Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis.
Anal. Sci. 2010, 26, 1–12. [CrossRef] [PubMed]
15. Nelson, G.W.; Foord, J.S. Nanoparticle-Based Diamond Electrodes. In Novel Aspects of Diamond: From Growth
to Applications; Yang, N., Ed.; Springer: Berlin, Germany, 2015; pp. 165–204.
16. Amato, L.; Schulte, L.; Heiskanen, A.; Keller, S.S.; Ndoni, S.; Emnéus, J. Novel Nanostructured Electrodes
Obtained by Pyrolysis of Composite Polymeric Materials. Electroanalysis 2015, 27, 1544–1549. [CrossRef]
17. Ramachandran, R.; Chen, S.M.; Kumar, G.P.G.; Gajendran, P.; Devi, N.B. An Overview of Fabricating
Nanostructured Electrode Materials for Biosensor Applications. Int. J. Electrochem. Sci. 2015, 10, 8607–8629.
18. Hao, C.; Shen, Y.R.; Shen, J.X.; Xu, K.Y.; Wang, X.H.; Zhao, Y.; Ge, C. A glassy carbon electrode modified
with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and Cd(II). Microchim. Acta 2016, 183,
1823–1830. [CrossRef]
19. Yang, D.; Wang, L.; Chen, Z.L.; Megharaj, M.; Naidu, R. Anodic stripping voltammetric determination
of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles.
Microchim. Acta 2014, 181, 1199–1206. [CrossRef]
20. Do Nascimento, M.E.; Martelli, P.B.; Furtado, C.A.; Santos, A.P.; de Oliveira, L.F.C.; de Fátima Gorgulho, H.
Determination of lead(II) in aqueous solution using carbon nanotubes paste electrodes modified with
Amberlite IR-120. Microchim. Acta 2011, 173, 485–493. [CrossRef]
21. Vanderlinden, W.E.; Dieker, J.W. Glassy-carbon as electrode material in electroanalytical chemistry.
Anal. Chim. Acta 1980, 119, 1–24. [CrossRef]
22. Svancara, I.; Vytras, K.; Barek, J.; Zima, J. Carbon paste electrodes in modern electroanalysis. Crit. Rev.
Anal. Chem. 2001, 31, 311–345. [CrossRef]
23. Shaidarova, L.G.; Budnikov, G.K. Chemically modified electrodes based on noble metals, polymer films,
or their composites in organic voltammetry. J. Anal. Chem. 2008, 63, 922–942. [CrossRef]
24. Tallman, D.E.; Petersen, S.L. Composite electrodes for electroanalysis—Principles and applications.
Electroanalysis 1990, 2, 499–510. [CrossRef]
25. Green, R.A.; Baek, S.; Poole-Warren, L.A.; Martens, P.J. Conducting polymer-hydrogels for medical electrode
applications. Sci. Technol. Adv. Mater. 2010, 11. [CrossRef] [PubMed]
26. Liu, T.T.; Shao, G.J.; Ji, M.T.; Ma, Z.P. Research Progress in Nano-Structured MnO2 as Electrode Materials for
Supercapacitors. Asian J. Chem. 2013, 25, 7065–7070.
27. Xu, J.H.; Wang, Y.Z.; Hu, S.S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular
functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 2017,
184, 1–44. [CrossRef]
28. Dos Santos, V.B.; Fava, E.L.; Curi, N.S.D.; Faria, R.C.; Guerreiro, T.B.; Fatibello-Filho, O. An electrochemical
analyzer for in situ flow determination of Pb(II) and Cd(II) in lake water with on-line data transmission and
a global positioning system. Anal. Methods 2015, 7, 3105–3112. [CrossRef]
29. Nejdl, L.; Kudr, J.; Cihalova, K.; Chudobova, D.; Zurek, M.; Žalud, L.; Kopecný, L.; Burian, F.;
Ruttkay-Nedecký, B.; Prášek, J.; et al. Remote-controlled robotic platform Orpheus as a new tool for
detection of bacteria in the environment. Electrophoresis 2014, 35, 2333–2345. [CrossRef] [PubMed]
30. Barton, J.; Garcia, M.B.G.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P.
Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta 2016,
183, 503–517. [CrossRef]
31. Li, M.; Li, Y.T.; Li, D.W.; Long, Y.T. Recent developments and applications of screen-printed electrodes in
environmental assays—A review. Anal. Chim. Acta 2012, 734, 31–44. [CrossRef] [PubMed]
32. Yosypchuk, B.; Novotny, L. Nontoxic electrodes of solid amalgams. Crit. Rev. Anal. Chem. 2002, 32, 141–151.
[CrossRef]
33. Mikkelsen, O.; Schroder, K.H. Amalgam electrodes for electroanalysis. Electroanalysis 2003, 15, 679–687.
[CrossRef]
34. Yosypchuk, B.; Novotny, L. Copper solid amalgam electrodes. Electroanalysis 2003, 15, 121–125. [CrossRef]
35. Yosypchuk, B.; Barek, J. Analytical Applications of Solid and Paste Amalgam Electrodes. Crit. Rev. Anal. Chem.
2009, 39, 189–203. [CrossRef]
36. Jelen, F.; Yosypchuk, B.; Kourilova, A.; Novotny, L.; Palecek, E. Label-free determination of picogram
quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the
presence of copper. Anal. Chem. 2002, 74, 4788–4793. [CrossRef] [PubMed]
37. Novakova, K.; Navratil, T.; Dytrtova, J.J.; Chylkova, J. Use of Copper Solid Amalgam Electrode for
Determination of Triazolic Fungicide Tebuconazole. In Xxxii Moderni Elektrochemicke Metody; J. Heyrovsky
Institute of Physical Chemistry AS Cˇ R: Prague, Czech Republic, 2012; pp. 87–90.
38. De Souza, D.; de Toledo, R.A.; Mazo, L.H.; Machado, S.A.S. Utilization of a copper solid amalgam electrode
for the analytical determination of atrazine. Electroanalysis 2005, 17, 2090–2094. [CrossRef]
39. Yosypchuk, B.; Sestakova, I.; Novotny, L. Voltammetric determination of phytochelatins using copper solid
amalgam electrode. Talanta 2003, 59, 1253–1258. [CrossRef]
40. Zhao, G.; Wang, H.; Liu, G. Electrochemical Determination of Trace Cadmium in Soil by a Bismuth
Film/Graphene- -cyclodextrin-Nafion Composite Modified Electrode. Int. J. Electrochem. Sci. 2016, 11,
1840–1851.
41. Zhao, G.; Wang, H.; Liu, G.; Wang, Z.Q.; Cheng, J. Simultaneous determination of trace Cd(II) and Pb(II)
based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon
electrode by one-step electrodeposition. Ionics 2017, 23, 767–777. [CrossRef]
42. Aragay, G.; Puig-Font, A.; Cadevall, M.; Merkoci, A. Surface Characterizations of Mercury-Based Electrodes
with the Resulting Micro and Nano Amalgam Wires and Spheres Formations May Reveal Both Gained
Sensitivity and Faced Nonstability in Heavy Metal Detection. J. Phys. Chem. C 2010, 114, 9049–9055.
[CrossRef]
43. Golimowski, J.; Golimowska, K. UV-photooxidation as pretreatment step in inorganic analysis of
environmental samples. Anal. Chim. Acta 1996, 325, 111–133. [CrossRef]
44. Nascimento, P.C.; Del-Fabro, L.D.; Bohrer, D.; De Carvalho, L.M.; Rosa, M.B.; Noremberg, S.M. Al(III) and
Fe(III) Balance in Hemodialysis Treatment Assessed via Fluid Analysis by Adsorptive Stripping Voltammetry
and UV Sample Digestion. Electroanalysis 2008, 20, 1078–1084. [CrossRef]
45. Baccaro, A.L.B.; Gutz, I.G.R. Novel photoelectrocatalytic approach aiming at the digestion of water samples,
estimation of organic matter content and stripping analysis of metals in a special UV-LED irradiated cell
with a TiO2-modified gold electrode. Electrochem. Commun. 2013, 31, 28–30. [CrossRef]
46. Li, X.Z.; Li, F.B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and
wastewater treatment. Environ. Sci. Technol. 2001, 35, 2381–2387. [CrossRef] [PubMed]
47. Pekakis, P.A.; Xekoukoulotakis, N.P.; Mantzavinos, D. Treatment of textile dyehouse wastewater by TiO2
photocatalysis. Water Res. 2006, 40, 1276–1286. [CrossRef] [PubMed]
48. Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks
and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [CrossRef]
49. Perez-Sirvent, C.; Martinez-Sanchez, M.J.; Garcia-Lorenzo, M.L.; Molina, J.; Tudela, M.L. Geochemical
background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid
zone (SE, Spain). Geoderma 2009, 148, 307–317. [CrossRef]
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Jul 16, 2018 11:50 am

26. Theanponkrang S., Suginta W., Weingart H., Winterhalter M., Schulte A. Robotic voltammetry with carbon nanotube-based sensors: a superb blend for convenient high-quality antimicrobial trace analysis // International Journal of Nanomedicine. – 2015. V.10. P. 859–868.

Abstract: A new automated pharmacoanalytical technique for convenient quantification of redox-active antibiotics has been established by combining the benefits of a carbon nanotube (CNT) sensor modification with electrocatalytic activity for analyte detection with the merits of a robotic electrochemical device that is capable of sequential nonmanual sample measurements in 24-well microtiter plates. Norfloxacin (NFX) and ciprofloxacin (CFX), two standard fluoroquinolone antibiotics, were used in automated calibration measurements by differential pulse voltammetry (DPV) and accomplished were linear ranges of 1–10 ìM and 2–100 ìM for NFX and CFX, respectively. The lowest detectable levels were estimated to be 0.3±0.1 ìM (n=7) for NFX and 1.6±0.1 ìM (n=7) for CFX. In standard solutions or tablet samples of known content, both analytes could be quantified with the robotic DPV microtiter plate assay, with recoveries within ±4% of 100%. And recoveries were as good when NFX was evaluated in human serum samples with added NFX. The use of simple instrumentation, convenience in execution, and high effectiveness in analyte quantitation suggest the merger between automated microtiter plate voltammetry and CNT-supported electrochemical drug detection as a novel methodology for antibiotic testing in pharmaceutical and clinical research and quality control laboratories.

Main Figures:
ImageImage

References
1. Stanley R. Automation in analytical chemistry – from rule of thumb to fully automated methods. Some philosophies and social consequences. J Auto Chem. 1984;6:6–13.

2. Chailapakul O, Ngamukot P, Yoosamran A, Siangproh W, Wangfuengkanagul N. Recent electrochemical and optical sensors in flow-based analysis. Sensors. 2006;6:1383–1410.

3. Seidel M, Niessner R. Automated analytical microarrays: a critical review. Anal Bioanal Chem. 2008;391:1521–1544.

4. Ley C, Zengin Cekic S, Kochius S, et al. An electrochemical microtiter plate for parallel spectroelectrochemical measurements. Electrochim Acta. 2013;89:98–105.

5. Hynek D, Prasek J, Businova P, et al. Automated voltammetric determination of lead (II) ions using sensor array. Int J Electrochem Sci. 2013;8:4441–4446.

6. Kremplova M, Krejcova L, Hynek D, et al. Automated electrochemical detection of iron ions in erythrocytes from MeLiM minipigs suffering from melanoma. Int J Electrochem Sci. 2012;7:5893–5909.

7. Intarakamhang S, Leson C, Schuhmann W, Schulte A. A novel automated electrochemical ascorbic acid assay in the 24-well microtiter plate format. Anal Chim Acta. 2011;687:1–6.

8. Intarakamhang S, Schulte A. Automated electrochemical free radical scavenger screening in dietary samples. Anal Chem. 2012;84:6767–6774.

9. Intarakamhang S, Schuhmann W, Schulte A. A robotic heavy metal
anodic stripping voltammetry: ease and efficacy for trace lead and cadmium electroanalysis. J Solid State Electrochem. 2013;17:1535–1542.

10. Zhang F, Gu S, Ding Y, Zhang Z, Li L. A novel sensor based on electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones. Anal Chim Acta. 2013;770:53–61.

11. Ojani R, Raoof JB, Zamani S. A novel voltammetric sensor for amoxicillin based on nickel-curcumin complex modified carbon paste electrode. Bioelectrochemistry. 2012;85:44–49.

12. Peng JY, Hou CT, Liu XX, Li HB, Hu XY. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta. 2011;86:227–232.

13. Jain R, Rather JA. Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode. Colloids Surf B Biointerfaces. 2011;83:340–346.

14. Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM.
Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem. 2007;389:951–958.

15. Loetanantawong B, Suracheep C, Somasundrum M, Surareungchai W.
Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide-ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection. Anal Chem. 2004;76:2266–2272.

16. Ensafi AA, Allafchian AR, Rezaei B. A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr2O4 for the determination of azithromycin. Colloids Surf B Biointerfaces. 2013;102:468–474.

17. Devaraj M, Deivasigamani RK, Jeyadevan S. Enhancement of the electrochemical behavior of CuO nanoleaves on MWCNTs/GC composite film modified electrode for determination of norfloxacin. Colloids Surf B Biointerfaces. 2013;102:554–561.

18. Huang KJ, Liu X, Xie WZ, Yuan HX. Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/nafion. Colloids Surf B Biointerfaces. 2008;64:269–274.

19. Fotouhi L, Alahyari M. Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids Surf B Biointerfaces. 2010;81:110–114.

20. Ensafi AA, Taei M, Khayamian T, Hasanpour F. Simultaneous voltammetric determination of enrofloxacin and ciprofloxacin in urine and plasma using multiwall carbon nanotubes modified glassy carbon electrodes by least-squares support vector machines. Anal Sci. 2010;26:803–808.

21. Boccaccini AR, Cho J, Roether JA, Thomas BJC, Minay EJ, Shaffer MSP.
Electrophoretic deposition of carbon nanotubes. Carbon NY. 2006;44:3149–3160.

22. Gong ZQ, Sujari ANA, Ab Ghani S. Electrochemical fabrication, characterization and application of carboxylic multi-walled carbon nanotube modified composite pencil graphite electrodes. Electrochim Acta. 2012;65:257–265.

23. Vural T, Kuralay F, Bayram C, Abaci S, Denkbas EB. Preparation and physical/electrochemical characterization of carbon nanotube-chitosan modified pencil graphite electrode. Appl Surf Sci. 2010;257:622–627.

24. Kalachar HCB, Nayaka YA, Vinayaka KS, Viswanatha R, Vasanth Kumar MS. Electrochemical studies on usnic acid from Usnea pseudosinensis using multi walled carbon nanotube modified pencil graphite electrode. Int J Anal Bioanal Chem. 2012;2:179–184.

25. Agrawal B, Chandra P, Goyal RN, Shim YB. Detection of norfloxacin and monitoring its effect on caffeine catabolism in urine samples. Biosens Bioelectron. 2013;47:307–312.

26. Wang Z, Li J, Liu X, Yang J, Lu X. Preparation of an amperometric sensor for norfloxacin based on molecularly imprinted grafting photopolymerization. Anal Bioanal Chem. 2013;405:2525–2533.

27. Goyal RN, Singh Rana AR, Chasta H. Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals. Bioelectrochemistry. 2012;83:46–51.

28. Reddy TM, Balaji K, Reddy SJ. Voltammetric behavior of some fluorinated quinolone agents and their differential pulse voltammetric determination in drug formulations and urine samples using a β-cyclodextrin-modified carbon-paste electrode. J Anal Chem. 2007;62:
168–175.

29. Ni Y, Wang Y, Kokot S. Simultaneous determination of three fluoroquinolones by linear sweep stripping voltammetry with the aid of chemometrics. Talanta. 2006;69:216–225.

30. Ghoneim MM, Radi A, Beltagi AM. Determination of norfloxacin by square-wave adsorptive voltammetry on a glassy carbon electrode. J Pharm Biomed Anal. 2001;25:205–210.

31. Ensafi AA, Allafchian AR, Mohammadzadeh R. Characterization of MgFe2O4 nanoparticles as a novel electrochemical sensor: application for the voltammetric determination of ciprofloxacin. Anal Sci. 2012;28:705–710.

32. Zhang X, Wei Y, Ding W. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Anal Chim Acta. 2014;835:29–36.

33. Zhang S, Wei S. Electrochemical determination of ciprofloxacin based on the enhancement effect of sodium dodecyl benzene sulfonate. Bull Korean Chem Soc. 2007;28:543–546.

34. Ionescu RE, Jaffrezic-Renault N, Bouffier L, et al. Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosens Bioelectron. 2007;23:549–555.

35. The Association of Analytical Communities (AOAC). Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. 2013. Available from: http://www.eoma.aoac.org/app_k.pdf. Download from November, 2013.

36. Kümmerer K. Antibiotics in the aquatic environment – A review – Part I.
Chemosphere. 2009;75:417–434.

37. Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut. 2014;187:193–204.

38. Woolhouse M, Farrar J. An intergovernmental panel on antimicrobial resistance. Nature. 2014;509:555–557.

39. Torjesen I. Antimicrobial resistance presents an “apocalyptic” threat similar to that of climate change, CMO warns. BMJ. 2013;346:f1597.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Sun Jul 29, 2018 10:12 pm

27. Serra P. A., Rocchitta G., Bazzu G., Mancaa A., Puggioni G. M., Lowryb J. P. Design and construction of a low cost single-supply embedded telemetry system for amperometric biosensor applications // Sensors and Actuators.-2007. B 122. P. 118–126.

Abstract: A new embedded telemetry system for amperometric biosensor application is presented. The device consists of a single-supply miniature potentiostat-I/V converter, a microcontroller unit (MCU), a signal transmitter, and a stabilized power supply. The sensor current is converted to a digital value using a peripheral interface controller (PIC) MCU with an integrated analog-to-digital converter (ADC). The PIC firmware is developed in assembly and transferred to the MCU through an in-circuit-serial-programmer (ICSP). The digital data are sent to a personal computer using a miniaturized 433.92MHz amplitude modulation (AM) transmitter with a linear range up to 30 m. The radio receiver is connected to a PC via a Universal Serial Bus (USB). Custom developed software, written in C and Basic, allows the PC to record, plot and handle the received data. The design, construction and operation of the hardware and software are described. The system performance was evaluated in vitro using a dummy cell and a platinum (Pt) amperometric glucose biosensor. This device serves as a basic model to realize an in vivo, low-cost, miniaturized telemetry system built with standard hardware components readily available.

Main Figures:
Image

Image

Image

References
[1] F.W. Scheller, F. Schubert, J. Fedowitz, Frontiers in Biosensorics I Fundamental
Aspects, Birkhauser Verlag, Basel, 1997.
[2] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and
Applications, John Wiley & Sons, New York, 1980.
[3] P. Pantano,W.G. Kuhr, Enzyme-modified microelectrodes for in vivo neurochemical
measurements, Electroanalysis 7 (1995) 405.
[4] D. Pfeiffer, F. Schubert, U. Wollenberger, F.W. Scheller, Electrochemical
sensors: enzyme electrodes and field effect transistors, in: R.F. Taylor, J.S.
Schultz (Eds.), Handbook of Chemical and Biological Sensors, IOP, England,
1996, pp. 435–458.
[5] R.Wilson, A.P.F. Turner, Glucose oxidase: an ideal enzyme, Biosens. Bioelectron.
7 (1992) 165–185.
[6] J.P. Lowry, M. Miele, R.D. O’Neill, M.G. Boutelle, M. Fillenz, An amperometric
glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring
brain extracellular glucose: in vivo characterisation in the striatumof freely-moving rats, J. Neurosci. Methods 79 (1) (1998) 65–
74.
[7] D.C. Leuher, Overview of biomedical telemetry techniques, Eng. Med.
Biol. 3 (1983) 17–24.
[8] M. Shichiri, N. Asasawa, Y. Yamasaki, R. Kawamori, H. Abe, Telemetry
glucose monitoring device with needle glucose sensor: a useful tool for
blood glucose monitoring in diabetic individuals, Diabetes Care 9 (1986)
298–301.
[9] J. Black, M. Wilkins, P. Atanasov, E. Wilkins, Integrated sensor-telemetry
system for in vivo glucose monitoring., Sens. Actuators B: Chem. 31 (1996)
147–153.
[10] F. Crespi, D. D’alessandro, V. Annovazzi-Lodi, C. Heidbreder, M. Norgia,
In vivo voltammetry: from wire to wireless measurements, J. Neurosci.
Methods 140 (1–2) (2004) 153–161.
[11] P.A. Garris, R. Ensman, J. Poehlman, A. Alexander, P.E. Langley, S.G.
Sandberg, P.G. Greco, R.M.Wightman, G.V. Rebec,Wireless transmission
of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of
principle, J. Neurosci. Methods 140 (1–2) (2004) 103–115.
[12] J. Millar, J.J. O’Connor, S.J. Trout, Z.L. Kruk, Continuous scan cyclic
voltammetry (CSCV): a new high-speed electrochemical method for
monitoring neuronal dopamine release, J. Neurosci. Methods 43 (1992)
109–118.
[13] J.P. Lowry, R.D. O’Neill, M.G. Boutelle, M. Fillenz, Continuous monitoring
of extracellular glucose concentrations in the striatum of freely moving
rats with an implanted glucose biosensor, J. Neurochem. 70 (1) (1998)
391–396.
[14] G. Pagnacco, E. Oggero, D.R. Morr, N. Berme, Oversampling data acquisition
to improve resolution of digitized signals, Biomed. Sci. Instrum. 34
(1997) 137–142.
[15] M.D. Steinberg, C.R. Lowe, A micropower amperometric potentiostat,
Sens. Actuators B: Chem. 97 (2004) 284–289.
[16] K.S. Yun, J. Gil, J. Kim, H.J. Kim, K. Kim, D. Park, M.S. Kim, H. Shin,
K. Lee, J. Kwak, E. Yoon, A miniaturized low-power wireless remote
environmental monitoring system based on electrochemical analysis, Sens.
Actuators B: Chem. 102 (1) (2004) 27–34.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Sun Aug 05, 2018 10:50 pm

28. Keiichiro Yamanaka, Mun’delanji C. Vestergaard,* and Eiichi Tamiya. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application // Sensors. - 2016, 16, 1761; doi:10.3390/s16101761.

Abstract: In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.

Main Figures:
Image

Image


References
1. Rasooly, A.; Herold, K.E. Biosensor Technologies. In Biosensors and Biodetection, Methods and Protocols;
Rasooly, A., Herold, K.E., Eds.; Humana Press: New York, NY, USA, 2009.
2. Andreescu, S.; Sadik, O.A. Trends and challenges in biochemical sensors for clinical and environmental
monitoring. Pure Appl. Chem. 2004, 76, 861–878.
3. Turner, A. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [CrossRef] [PubMed]
4. Vestergaard, M.C.; Tamiya, E. Introduction to Nanobiosensors and Nanobioanalyses. In Nanobiosensors and
Nanobioanalyses; Vestergaard, M.C., Kerman, K., Hsing, I.-M., Tamiya, E., Eds.; Springer: Tokyo, Japan, 2015;
pp. 3–20.
5. Iqbal, S.S.; Mayo, M.W.; Bruno, D.G.; Bronk, B.V. A review of molecular recognition technologies for detection
of biological threat agents. Biosens. Bioelectron. 2000, 15, 549–578. [CrossRef]
6. Turner, A.P.E. Biochemistry: Biosensors—Sense and sensitivity. Science 2000, 290, 1315–1317. [CrossRef]
[PubMed]
7. Zuzuaregui, A.; Souto, D.; Perez-Lorenzo, E.; Sanches-Gomez, S.; Martinez de Tejara, G.; Brandenburg, K.;
Arana, S.; Mujika, M. Novel integrated and portable endotoxin detection system based on an electrochemical
biosensor. Analyst 2015, 140, 654–660. [CrossRef] [PubMed]
8. Cesarino, I.; Moraes, F.C.; Lanza, M.R.V.; Machado, S.A.S. Electrochemical detection of carbamate pesticides
in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of
polyaniline-carbon nanotubes. Food Chem. 2012, 135, 873–879. [CrossRef] [PubMed]
9. Lien, T.N.Y.; Chikae, M.; Ukita, Y.; Takamura, Y. Labelless impedance immunosensor based on
polypyrrole-pyrolecarboxylic acid copolymer for hCG detection. Talanta 2011, 85, 2576–2580.
10. Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications.
Chem. Soc. Rev. 2013, 42, 5425–5438. [CrossRef] [PubMed]
11. Pathak, S.; Estrela, P. Field-effect transistors: Current advances and challenges in bringing them to
point-of-care. In Nanobiosensors and Nanobioanalyses; Vestergaard, M.C., Kerman, K., Hsing, I.-M., Tamiya, E.,
Eds.; Springer: Tokyo, Japan, 2015; pp. 3–20.
12. Roberts, G. History’s influence on screen printing’s future. Screen Print. 2006, 96, 22–25.
13. Hyun,W.J.; Park, O.O.; Chin, B.D. Foldable graphene electronic circuits based on paper substrates. Adv. Mater.
2013, 25, 4729–4734. [CrossRef] [PubMed]
14. Washe, A.; Lozano-Sanchez, P.; Bejarano-Nosas, D. Facile and versatile approaches to enhancing
electrochemical performance of screen printed electrodes. Electrochim. Acta 2013, 91, 166–172. [CrossRef]
15. Sze, V.W.; Kerman, K. Carbon nanotubes: Advances, integration and application to printable electrochemical
biosensors. In Nanobiosensors and Nanobioanalyses; Vestergaard, M.C., Kerman, K., Hsing, I.-M., Tamiya, E.,
Eds.; Springer: Tokyo, Japan, 2015; pp. 271–289.
16. Retna, R.; Ohsaka, T. Analytical applications of functionalized self-assembled monolayers on gold electrod:
Voltammetric sensing of DOPAC at the physiological level. Electroanalysis 2001, 14, 679–684.
17. Li, M.; Li, Y.-T.; Li, D.-W.; Long, Y.-T. Recent Developments and applications of screen-printed electrodes in
environmental assays—A review. Anal. Chim. Acta 2012, 74, 31–44. [CrossRef] [PubMed]
18. Hayat, A.; Andreescu, S.; Marty, J.-L. Design of PEG-aptamer two piece macromolecules as convenient and
integrated sensing platform: Application to the label free detection of small size molecules. Biosens. Bioelectron.
2013, 45, 168–173. [CrossRef] [PubMed]
19. Hayat, A.; Haider, W.; Rolland, M.; Marty, J.-L. Electrochemical grafting of long spacer arms of
hexamethyldiamine on a screen printed carbon electrode surface: Application in target induced ochratoxin
A electrochemical aptasensor. Analyst 2013, 138, 2951–2957. [CrossRef] [PubMed]
20. Lien, T.N.T.; Takamura, Y.; Tamiya, E.; Vestergaard, M.C. Modified screen printed electrode for development
of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides. Anal. Chim. Acta
2015, 892, 69–76. [CrossRef] [PubMed]
21. Khan, R.; Gorski,W.; Garcia, C.D. Nanomolar Detection of Glutamate at a Biosensor Based on Screen-Printed
Electrodes Modified with Carbon Nanotubes. Electroanalysis 2011, 10, 2357–2363. [CrossRef] [PubMed]
22. Prieto-Simon, B.; Macanas, J.; Munoz, M.; Fabregas, E. Evaluation of different mediator-modified
screen-printed electrodes used in a flow system as amperometric sensors for NADH. Talanta 2007, 71,
2102–2107. [CrossRef] [PubMed]
23. Prieto-Simon, B.; Fabregas, E. New redox mediator-modified polysulfone composite films for the
development of dehydrogenase-based biosensors. Biosens. Bioelectron. 2006, 22, 131–137. [CrossRef]
[PubMed]
24. Millan, K.M.; Mikkelsen, S.R. Sequence-selective biosensor for DNA based on electroactive hybridization
indicators. Anal. Chem. 1993, 65, 2317–2323. [CrossRef] [PubMed]
25. Chen, S.-Z.; Cai, Q.; Peng, F.-Y.; Huang, X.-X.; Jia, Y.-L. Screen-printed electrochemical biosensor for detection
of DNA hybridization. Chin. J. Anal. Chem. 2012, 40, 1194–1200. [CrossRef]
26. Dai, L.; Hai, B.; Van Hieu, N.; Vinh, H. Electrochemical detection of short HIV sequences on chitosan/Fe3O4
nanoparticle based screen printed electrodes. Mater. Sci. Eng. C 2011, 31, 477–485.
27. Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-selective recognition of DNA by strand
displacement with a thymine-substituted polyamide. Science 1991, 254, 1497–1500. [CrossRef] [PubMed]
28. Odenthal, K.L.; Gooding, J.J. An introduction to electrochemical DNA biosensors. Analyst 2007, 132, 603–610.
[CrossRef] [PubMed]
29. Gorodetsky, A.A.; Buzzeo, M.C.; Barton, J.K. DNA-mediated electrochemistry. Bioconj. Chem. 2008, 19,
2285–2296. [CrossRef] [PubMed]
30. Yu, C.J.;Wan, Y.; Yowanto, H.; Li, J.; Tao, C.; James, M.D.; Tan, C.L.; Blackburn, G.F.; Meade, T.J. Electronic
Detection of Single-Base Mismatches in DNA with Ferrocene-Modified Probes. J. Am. Chem. Soc. 2001, 123,
11155–11161. [CrossRef] [PubMed]
31. Ozsoz, M.; Erdem, A.; Kerman, K.; Ozkan, D.; Tugrul, B.; Topcouglu, N.; Ekren, H.; Taylan, M. Electrochemical
genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using
disposable pencil graphite electrodes. Anal. Chem. 2003, 75, 2181–2187. [CrossRef] [PubMed]
32. Martínez-Paredes, G.; González-García, M.B.; Costa-García, A. Genosensor for detection of four pneumoniae
bacteria using gold nanostructured screen-printed carbon electrodes as transducers. Sens. Actuators B Chem.
2010, 149, 329–335. [CrossRef]
33. Galandová, J.; Ovádeková, R.; Ferancová, A.; Labuda, J. Disposable DNA biosensor with the carbon
nanotubes-polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage
by quinazolines. Anal. Bioanal. Chem. 2009, 394, 855–861. [CrossRef] [PubMed]
34. Kerman, K.; Vestergaard, M.; Nagatani, N.; Takamura, Y.; Tamiya, E. Electrochemical Genosensor Based on
Peptide Nucleic Acid-Mediated PCR and Asymmetric PCR Techniques: Electrostatic Interactions with a
Metal Cation. Anal. Chem. 2006, 78, 2182–2189. [CrossRef] [PubMed]
35. Erdem, A.; Congur, G.; Eksin, E. Multi channel screen printed array of electrodes for enzyme-linked
voltammetric detection of MicroRNAs. Sens. Actuators B Chem. 2013, 188, 1089–1095. [CrossRef]
36. LaGier, M.J.; Scholin, C.A.; Fell, J.W.; Wang, J.; Goodwin, K.D. An electrochemical RNA hybridization assay
for detection of the fecal indicator bacterium Escherichia coli. Mar. Pollut. Bull. 2005, 50, 1251–1261. [CrossRef]
[PubMed]
37. Zhang, Y.; Kim, H.-H.; Heller, A. Enzyme-Amplified Amperometric Detection of 3000 Copies of DNA in a
10-L Droplet at 0.5 fM Concentration. Anal. Chem. 2003, 75, 3267–3269. [CrossRef] [PubMed]
38. Won, B.Y.; Shin, S.; Baek, S.; Jung, Y.L.; Li, T.; Shin, S.C.; Cho, D.Y.; Lee, S.B.; Park, H.G. Investigation of the
signaling mechanism and verification of the performance of an electrochemical real-time PCR system based
on the interaction of methylene blue with DNA. Analyst 2011, 136, 1573–1579. [CrossRef] [PubMed]
39. Xiao, D.; Yuan, H.Y.; Li, J.; Yu, R.Q. Surface-modified cobalt-based sensor as a phosphate-sensitive electrode.
Anal. Chem. 1995, 67, 288–291. [CrossRef]
40. Meruva, R.K.; Meyerhoff, M.E. Mixed potential response mechanism of cobalt electrodes toward inorganic
phosphate. Anal. Chem. 1996, 68, 2022–2026.
41. Defever, T.; Druet, M.; Rochelet-Dequaire, M.; Joannes, M. Real-Time Electrochemical Monitoring of the
Polymerase Chain Reaction by Mediated Redox Catalysis. J. Am. Chem. Soc. 2009, 131, 11433–11441.
[CrossRef] [PubMed]
42. Yeung, S.S.W.; Lee, T.M.H.; Hsing, I.M. Electrochemical Real-Time Polymerase Chain Reaction. J. Am.
Chem. Soc. 2006, 128, 13374–13375. [CrossRef] [PubMed]
43. Yeung, S.S.W.; Lee, T.M.H.; Hsing, I.M. Electrochemistry-based real-time PCR on a microchip. Anal. Chem.
2008, 80, 363–368. [CrossRef] [PubMed]
44. Kerman, K.; Vestergaard, M.; Tamiya, E. Electrochemical DNA biosensors: Protocols for intercalator-based
detection of hybridization in solution and at the surface. Methods Mol. Biol. 2009, 504, 99–113. [PubMed]
45. Fang, T.H.; Ramalingam, N.; Dong, X.D.; Ngin, T.S.; Xianting, Z.; Lai, K.A.T.; Peng, H.T.Y.; Hai-Qing, G.
Real-time PCR microfluidic devices with concurrent electrochemical detection. Biosens. Bioelectron. 2009, 24,
2131–2136. [CrossRef] [PubMed]
46. Yamanaka, K.; Saito, M.; Kondoh, K.; Hossain, M.M.; Koketsu, R.; Sasaki, T.; Nagatani, N.; Ikuta, K.;
Tamiya, E. Rapid detection for primary screening of influenza A virus: Microfluidic RT-PCR chip and
electrochemical DNA sensor. Analyst 2011, 136, 2064–2068. [CrossRef] [PubMed]
47. Defever, T.; Druet, M.; Evard, D.; Marchal, D.; Limoges, B. Real-time electrochemical PCR with a DNA
intercalating redox probe. Anal. Chem. 2011, 83, 1815–1821. [CrossRef] [PubMed]
48. Kobayashi, M.; Mizukami, T.; Morita, Y.; Murakami, Y.; Yokoyama, K.; Tamiya, E. Electrochemical gene
detection using microelectrode array on DNA chip. Electrochemistry 2001, 69, 1013–1016.
49. Yamanaka, K.; Sekine, S.; Uenoyama, T.; Wada, M.; Ikeuchi, T.; Saito, M.; Yamaguchi, Y.; Tamiya, E.
Quantitative Detection for Porphyromonas gingivalis in Tooth Pocket and Saliva by Portable Electrochemical
DNA Sensor Linked with PCR. Electroanalysis 2014, 26, 2686–2692. [CrossRef]
50. Kobayashi, M.; Kusakawa, T.; Saito, M.; Kaji, S.; Oomura, M.; Iwabuchi, S.; Morita, Y.; Hasan, Q.; Tamiya, E.
Electrochemical DNA quantification based on aggregation induced by Hoechst 33258. Electrochem. Commun.
2004, 6, 337–343.
51. Yamanaka, K.; Ikeuchi, T.; Saito, M.; Nagatani, N.; Tamiya, E. Electrochemical detection of specific DNA and
respiratory activity of Escherichia coli. Electrochim. Acta 2012, 82, 132–136. [CrossRef]
52. Carter, M.T.; Rodriguez, M.; Bard, A.J. Voltammetric studies of the interaction of metal chelates with DNA.
2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,20-bipyridine. J. Am.
Chem. Soc. 1989, 111, 8901–8911. [CrossRef]
53. Wang, S.; Peng, T.; Yang, C.F.J. Investigation on the interaction of DNA and electroactive ligands using a
rapid electrochemical method. Biochem. Biophys. Methods 2003, 55, 191–204. [CrossRef]
54. Lisowski, P.; Zarzycki, P.K. Microfluidic paper-based analytical devices (PADs) and micro total analysis
systems (TAS): Development, applications and future trends. Chromatographia 2013, 76, 2001–2014.
[CrossRef] [PubMed]
55. Schneegass, I.; Brautigam, R.; Kohler, J.M. Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 2001, 1, 42–49. [CrossRef] [PubMed]
56. Hsieh, K.; Ferguson, B.S.; Eisenstein, M.; Plaxco, K.W.; Soh, H.T. Integrated electrochemical microsystems for
genetic detection of pathogens at the point of care. Acc. Chem. Res. 2015, 48, 911–920. [CrossRef] [PubMed]
57. Paterson, A.S.; Heithoff, D.M.; Ferguson, B.S.; Soh, H.T.; Mahan, M.J.; Plaxco, K.W. Microfluidic chip-based
detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic
mice. Appl. Environ. Microbiol. 2013, 79, 2302–2311.
58. Cho, M.; Chung, S.; Kim, Y.T.; Jung, J.H.; Jim, D.H.; Seo, T.S. A fully integrated microdevice for biobarcode
assay based biological agent detection. Lab Chip 2015, 15, 2744–2748.
59. Kopp, M.U.; Mello, A.J.; Manz, A. Chemical Amplification: Continuous-Flow PCR on a Chip. Science 1998,
280, 1046–1048. [CrossRef] [PubMed]
60. Yang, F.; Zuo, X.; Li, Z.; Deng, W.; Shi, J.; Zhang, G.; Huang, Q.; Song, S.; Fan, C. A Bubble-Mediated
Intelligent Microscale Electrochemical Device for Single-Step Quantitative Bioassays. Adv. Mater. 2014, 26,
4671–4676.
61. WHO Information for Laboratory Diagnosis of Pandemic (H1N1) 2009 Virus in Humans-Revised.
Available online: http://www.who.int/csr/resources/public ... iagnostic_
RecommendationsH1N1_20090521.pdf (accessed on 3 March 2010).
62. Nafisi, S.; Saboury, A.A.; Keramat, N.; Neault, J.F.; Tajimir-Riahi, H.A. Stability and structural features of
DNA intercalation with ethidium bromide, acridine orange and methylene blue. J. Mol. Struct. 2007, 827,
35–43.
63. Zhao, G.-C.; Zhu, J.-J.; Chen, H.-Y. Spectroscopic studies of the interactive model of methylene blue with
DNA by means of -cyclodextrin. Spectrochim. Acta Part A 1999, 55, 1109–1117.
64. Yang, W.; Ozsoz, M.; Hibbert, D.B.; Gooding, J.J. Evidence for the direct interaction between methylene
blue and guanine bases using DNA-modified carbon paste electrodes. Electroanalysis 2002, 14, 1299–1302.
65. Tani, A.; Thomson, A.J.; Butt, J.N. Methylene blue as an electrochemical discriminator of single- and
double-stranded oligonucleotides immobilised on gold substrates. Analyst 2001, 126, 1756–1759. [CrossRef]
[PubMed]
66. Kerman, K.; Ozkan, D.; Kara, P.; Meric, B.; Gooding, J.J.; Oszos, M. Voltammetric determination of
DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes.
Anal. Chim. Acta 2002, 462, 39–47.
67. Ahmed, M.U.; Idegami, K.; Chikae, M.; Kerman, K.; Chaumpluk, P.; Shimamura, S.; Tamiya, E.
Electrochemical DNA biosensor using a disposable electrochemical printed (DEP) chip for the detection of
SNPs from unpurified PCR amplicons. Analyst 2007, 132, 431–438. [CrossRef] [PubMed]
68. Ahmed, M.U.; Hasan, Q.; Hossain, M.M.; Saito, M.; Tamiya, E. Meat species identification based on the
loop mediated isothermal amplification and electrochemical DNA sensor. Food Control 2010, 21, 599–605.
[CrossRef]
69. Yalow, R.S.; Berson, S.A. Assay of plasma insulin in human subjects by immunological methods. Lett. Nat.
1959, 184, 1648–1649. [CrossRef]
70. Dou, W.; Tang, W.; Zhao, G. A disposable electrochemical immunosensor arrays using 4-channel
screen-printed carbon electrode for simultaneous detection of Escherichia coli O157:H7 and
Enterobacter sakazakii. Electrochim. Acta 2013, 37, 79–85. [CrossRef]
71. San, L.; Zeng, D.; Song, S.; Zuo, X.; Zhang, H.; Wang, C.; Wu, J.; Mi, X. An electrochemical immunosensor for
quantitative detection of ficolin-3. Nanotechnology 2016, 27, 254003. [CrossRef] [PubMed]
72. Vig, A.; Muñoz-Berbel, X.; Radoi, A.; Cortina-Puig, M.; Marty, J.-L. Characterization of the gold-catalyzed
deposition of silver on graphite screen-printed electrodes and their application to the development of
impedimetric immunosensors. Talanta 2009, 80, 942–946. [CrossRef] [PubMed]
73. Giacomelli, C.E.; Vermeer, A.W.P.; Norde, W. Adsorption of immunoglobulin G on core-shell latex particles
precoated with chaps. J. Colloid Interf. Sci. 2000, 231, 283–288. [CrossRef] [PubMed]
74. Charelier, R.C.; Gengenbach, T.R.; Griesser, H.J.; Brigham-Burke, M.; O’Shannessy, D.J. A general method
to recondition and reuse BIAcore sensor chips fouled with covalently immobilized protein/peptide.
Anal. Biochem. 1995, 229, 112–118. [CrossRef]
75. Charles, P.T.; Goldman, E.R.; Rangasammy, J.G.; Schauer, C.L.; Chen, M.S.; Taitt, C.R. Fabrication and
characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor
application. Biosens. Bioelectron. 2004, 20, 753–764. [CrossRef] [PubMed]
76. Palma, R.; Borghs, G.; Declerck, P.; Goddeeris, B. Comparison of random and oriented immobilization of
antibody fragments on mixed self-assembled monolayers. J. Immunol. Methods 2006, 312, 167–181.
77. Xu, Z.; Yin, H.; Tian, Z.; Zhou, Y.; Ai, S. Electrochemical immunoassays for the detection of the activity
of DNA methyltransferase by using the rolling circle amplification technique. Microchim. Acta 2014, 181,
471–477. [CrossRef]
78. Gonzalez-Garcia, M.B.; Fernandez-Sanchez, C.; Costa-Garcia, A. Colloidal gold as an electrochemical label
of streptavidin-biotin interaction. Biosens. Bioelectron. 2000, 15, 315–321. [CrossRef]
79. Dequaire, M.; Degrand, C.; Limoges, B. An electrochemical metalloimmunoassay based on a colloidal gold
label. Anal. Chem. 2000, 72, 5521–5528. [CrossRef] [PubMed]
80. Chikae, M.; Idegami, K.; Kerman, K.; Nagatani, N.; Ishikawa, M.; Takamura, Y.; Tamiya, E. Direct fabrication
of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode. Electrochem. Commun.
2006, 8, 1375–1380. [CrossRef]
81. Benson, J.; Fung, C.M.; Lioyd, J.S.; Deganello, D.; Smith, N.A.; Teng, K.S. Direct patterning of gold
nanoparticles using flexographic printing for biosensing applications. Nanoscale Res. Lett. 2015, 10, 127.
[CrossRef] [PubMed]
82. Escamilla-Gómez, V.; Hernández-Santos, D.; González-García, M.B.; Pingarron-Carrazon, J.M.;
Costa-Garcia, A. Simultaneous detection of free and total prostate specific antigen on a screen-printed
electrochemical dual sensor. Biosens. Bioelectron. 2009, 24, 2678–2683. [CrossRef] [PubMed]
83. Idegami, K.; Chikae, M.; Kerman, K.; Nagatani, N.; Yuhi, T.; Tamiya, E. Gold Nanoparticle-Based Redox
Signal Enhancement for Sensitive Detection of Human Chorionic Gonadotropin Hormone. Electroanalysis
2008, 20, 14–21. [CrossRef]
84. Viet, N.X.; Chikae, M.; Ukita, Y.; Maehashi, K.; Matsumoto, K.; Tamiya, E.; Hung, P.; Takamura, Y. Gold-linked
electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human
chorionic gonadotropin hormone. Biosens. Bioelectron. 2013, 42, 592–597. [CrossRef] [PubMed]
85. Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardivascular surgery. Ann. N. Y.
Acad. Sci. 1962, 102, 29–35. [CrossRef] [PubMed]
86. Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis 2001, 13, 983–988.
[CrossRef]
87. Rahman, M.N.; Ahammad, A.J.S.; Jin, J.-H.; Ahn, S.J.; Lee, J.-J. A Comprehensive Review of Glucose
Biosensors Based on Nanostructured Metal-Oxides. Sensors 2010, 10, 4855–4886. [CrossRef] [PubMed]
88. Ispas, C.; Crivat, G.; Andreescu, S. Review: Recent developments in enzyme-based biosensors for biomedical
analysis. Anal. Lett. 2012, 45, 168–186. [CrossRef]
89. Dounin, V.; Veloso, A.J.; Schulze, H.; Backmann, T.T.; Kerman, K. Disposable electrochemical printed gold
chips for the analysis of acetylcholinesterase inhibition. Anal. Chim. Acta 2010, 669, 63–67. [CrossRef]
[PubMed]
90. Alonso-Lomillo, M.A.; Dominguez-Renedo, O.; Ferreira-Goncalves, L.; Arcos-Martinez, M.J. Sensitive
enzyme-biosensor based on screen-printed electrodes for Ochratoxin A. Bionsens. Bioelectron. 2010, 25,
1333–1337. [CrossRef] [PubMed]
91. Alonso-Lomillo, M.A.; Dominguez-Renedo, O.; Hernandez-Martin, A.; Arcos-Martinez, M.J. Electrochemical
determination of levetiracetam by screen-printed based biosensors. Bioelectrochemisyry 2009, 74, 306–309.
[CrossRef] [PubMed]
92. Alonso-Lomillo, M.A.; Dominguez-Renedo, O.; Matos, P.; Arcos-Martinez, M.J. Disposable biosensors for
determination of biogenic amines. Anal. Chim. Acta 2010, 665, 26–31. [CrossRef] [PubMed]
93. Martinez, N.A.; Messina, G.A.; Bertolino, F.A.; Salinas, E.; Raba, J. Screen-printed enzymatic biosensor
modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations.
Sens. Actuators B Chem. 2008, 133, 256–262. [CrossRef]
94. Chikae, M.; Kerman, K.; Nagatani, N.; Takamuya, Y.; Tamiya, E. An electrochemical on-field sensor forsystem
for the detection of compost maturity. Anal. Chim. Acta 2007, 581, 364–369. [CrossRef] [PubMed]
95. Palanisamy, S.; Karuppiah, C.; Chen, S.-M.; Periakaruppan, P. A highly sensitive and selective enzymatic
biosensor based on direct electrochemistry of haemoglobin at zinc oxide nanoparticles modified activated
screen printed carbon electrode. Electroanalysis 2014, 26, 1984–1993. [CrossRef]
96. Sanches, S.; Pumera, M.; Cabruja, E.; Fabregas, E. Carbon nanotube/polysulfone composite screen-printed
electrochemical enzyme biosensors. Analyst 2007, 132, 142–147. [CrossRef] [PubMed]
97. Zhang, L.; Li, Y.; Zhang, L.; Li, D.-W.; Karpuzov, D.; Long, Y.-T. Electrocatalytic oxidation of NADH on
graphene oxide and reduces graphene oxide modified screen-printed electrode. Int. J. Electrochem. Sci. 2011,
6, 819–829.
98. Ali, T.A.; Mohamed, G.G.; Azzam, E.M.S.; Abd-eaal, A.A. Thiol surfactant assembled on gold nanoparticles
ion exchanger for screen-printed electrode fabrication. Potentiometric determination of Ce(III) in
environmental polluted samples. Sens. Actuators B Chem. 2014, 191, 192–203. [CrossRef]
99. Song, W.; Zhang, L.; Shi, L.; Li, D.-W.; Li, Y.; Long, Y.-T. Simulatneous determination of cadminum (II), lead
(II) and copper (II) by using a screen-printed electrode modified with mercury nano-droplets. Microchim. Acta
2010, 169, 321–326. [CrossRef]
100. Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-printed electrodes for biosensiing: A review
(2008–2013). Mcrochim. Acta 2014, 181, 865–891. [CrossRef]
101. Halder, A.; Zhang, M.; Chi, Q. Electroactive and biocompartiblefunctionalization of graphenefor the
development of biosensing platforms. Biosens. Bioelectron. 2016, 87, 764–771. [CrossRef] [PubMed]
102. Kuralay, F.; Campuzano, S.; Haake, D.A.;Wang, J. Highly sensitive disposable nucleic acid biosensors for
direct bioelectronic detection in raw biological samples. Talanta 2011, 85, 1330–1337. [CrossRef] [PubMed]
103. Baraket, A.; Lee, M.; Zine, N.; Sagaud, M.; Bausells, J.; Errachid, A. A fully integrated electrochemical
biosensor platform fabrication process, for cytokins detection. Biosens. Bioelectron. 2014, 87, 377–379.
104. Guanovat, T.; Valdes-Ramirez, G.; Windmiller, J.R.; Andrade, F.J.; Wang, J. Bandage-based wearable
potentiometric sensorfor monitoring wound pH. Electroanalysis 2014, 26, 1345–1353.
105. Jia, W.; Bandodkar, A.J.; Valdez-Ramirez, G.; Windmiller, J.R.; Yang, Z.; Ramirez, J.; Cha, G.; Wnag, J.
Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration.
Anal. Chem. 2013, 85, 6553–6560. [CrossRef] [PubMed]
106. Bandokar, A.J.; Jia, W.; Yardimci, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose
monitoring: A proof-of-concept study. Anal. Chem. 2015, 87, 394–398. [CrossRef] [PubMed]
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Aug 14, 2018 9:46 am

28. Jordi Colomer-Farrarons, Pere L. Miribel-Catalа, A. Ivуn Rodrнguez-Villarreal and Josep Samitier. Portable Bio-Devices: Design of Electrochemical Instruments from Miniaturized to Implantable Devices / New Perspectives in Biosensors Technology and Applications. – 2011. P.379-399.

Abstract: The integration of biosensors and electronic technologies allows the development of biomedical systems able to diagnose and monitoring pathologies by detecting specific biomarkers. Experiences with amperometric sensors, calibration voltammetries and amperometric measurements, related to the presentation of the main techniques that can be used with such biosensors, are presented in this chapter, as well as the different results achieved in each case. A prototype to detect O2 in water for environmental purposes is presented as an example of a discrete disposable (Colomer et al., 2009c). The architecture and implementation of the electronics for an implantable approach is introduced (Colomer et al., 2009b), and comments concerning the implantable devices are included.

Main Figures:

Image
Image

Image

Image

Image


References
Bender, S., and Sadik, O.A. (1998). Direct electrochemical immunosensor for polychlorinated
biphenyls. Environ. Sci. Technol, vol. 32, pp. 788–797
BioLED Technology (2007). Internet Journal of emerging medical technologies, Available
from http://www.medgadget.com/archives/2007/ ... hnolo.html
Carlson, E., Strunz, K., and Otis, B. (2009). 20mV input boost converter for thermoelectric
energy harvesting. Proc. of the 2009 Symposium on VLSI Circuits, pp.162 – 163.
Carnes, E., and Wilkins, E. (2005). The development of a new, rapid, amperometric
immunosensor for the detection of low concentrations of bacteria. American Journal
of Applied Sciences.
Celik, T., and Kusetogullari, H. (2010). Solar-Powered Automated Road Survillance Systems
for Speed Violation Detection. IEEE Transactions on Industrial Electronics, vol. 57, no.
9, pp. 3216– 3227.
Chen, Jingkuang. (2006). Micro-machined medical devices, methods of fabricating microdevices,
and medical diagnosis, imaging, stimulation, and treatment. USPatent11/320921
Chinn, Douglas. (2008). Microfabricatin techniques for biologists: A Primer on Building
Micromachines, In: Microengineering in Biotechnology. Michael P. Hugehs and Kai F.
Hoettges. Springer. Methods in Molecular Biology, vol. 583, pp 1-53, ISBN:978-1-
58829-381-7.
Chung, W.Y., Paglinawan, A.C., Wang, Y.H., and Kuo, T.T. (2007). A 600μW Readout Circuit
with Potentiostat for Amperometric Chemical Sensors and Glucose Meter
Applications. Proc. of the IEEE Conference on Electron Devices and Solid- State Circuits,
pp. 1087 – 1090.
Cleven, R., Nur, Y., Krystek, P., and Van den Berg, G. (2005). Monitoring Metal Speciation in
the Rivers Meuse and Rhine using DGT. Water, air and Soil Pollution, vol.165, pp.
249-263.
Colomer-Farrarons, J., Miribel-Catala, P., Saiz-Vela, A., Puig-Vidal, M., & Samitier, J. (2008).
Power-Conditioning Circuitry for a Self-Powered System Based on Micro PZT
Generators in a 0.13μm Low-Voltage Low-Power Technology. IEEE Trans. on
Industrial Electronics, vol. 55, no. 9, Sept 2008, pp. 3249-3257.
Colomer-Farrarons, J., Miribel-Català, P., Rodríguez, I., & Samitier, J. (2009).CMOS Front-
End Architecture for In-Vivo Biomedical Implantable Devices. Proc. of the 35th
Annual Conference of the IEEE Industrial Electronics, Nov. 2009, pp.4437-4444.
Colomer, J., Miribel-Catala, P., Saiz-Vela, A., Rodriguez, I, &; Samitier, J. (2009). A low
power CMOS biopotentiostat in a low-voltage 0.13 μm digital technology. 52nd
IEEE International Midwest Symposium on Circuits and Systems, 2009. MWSCAS
'09.
Colomer-Farrarons, J., Miribel-Català, P., Samitier, J., Arundell, M., & Rodríguez, I. (2009).
Design of a miniaturized electrochemical instrument for in- situ O2 monitoring.
(Proceedings Paper), VLSI Circuits and Systems IV, Microtechnologies for the New
Millennium, Vol. 7363, Spie’09.
Colomer-Farrarons, J., Miribel-Català. P. (2011). A CMOS Self-Powred Front-End Architecture
for Subcutaneous Event-Detector Devices. Three-Electrodes Amperometric Biosensor
Approach. Springer, ISBN:978-94-007-0685-9, March 2011.
Ekanayake, E.M.I., Preethichandra, D.M.G., Kaneto, K. (2007). Fabrication and
characterization of nano-structured conducting polymer electrodes for glucose
biosensor applications. Proc. Of the International Conference on Industrial and
Information Systems, pp. 63 – 66
Farace, G., Lillie, T., Hianik, P., Payne and Vadgama, P. (2002). Reagentless biosensing using
electrochemical impedance spectroscopy. Bioelectrochemistry, vol. 55 , pp. 1–3.
Fiorito, P.A., and De Torresi, S.I.C. (2001). Glucose amperometric biosensor based on the coimmobilization
of glucose oxidase (Gox) and ferrocene in poly(pyrrole) generated
from ethanol/water mixtures. J. Braz. Chem. Soc., vol. 12, pp. 729–733.
Garbuio, L., Lallart, M., Guyomar, D., Richard, C., and Audigier, D. (2009). Mechanical
Energy Harvester With Ultralow Threshold Rectification Based on SSHI Nonlinear
Technique. IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1048 – 1056,
April 2009.
Ghafar-Zadeh, E., Sawan, M., and Therriault, D. (2009).CMOS based capacitive sensor
laboratory-on-chip: a multidisciplinary approach. Analog Integrated Circuits and
Signal Processing, vol. 59, issue 1, pp. 1-12
Goud, J.D., Raj, P.M., Jin Liu, Narayan, R., Iyer, M., Tummala, R. (2007). Electrochemical
Biosensors and Microfluidics in Organic System-on- Package Technology. Proc. Of
the Electronic Components and Technology Conference, 2007. ECTC '07, pp. 1550 – 1555.
Hiller, M., Kranz, C., Huber, J., Bauerle, P., and Schuhmann, W. (1996). Amperometric
biosensors produced by immobilization of redox enzymes at polythiophenemodified
electrode surfaces. Adv. Mater, vol.8, pp. 219–222.
Huang, X., Li S., Schultz, J., Wang, Q., and Lin, Q. (2009).A capacitively based MEMS affinity
glucose sensor. Proc. of the International Solid-State Sensors, Actuators and
Microsystems Conference, TRANSDUCERS 2009, 21-25 June 2009, pp. 1457 – 1460.
Irigoien, X., Post, J., Castel, J., Pfeiffer ,K.F., HellmannB. (1999). Nycthemeral variations of
the dissolved oxygen concentration in the turbidity maximum of three European
estuaries: biological vs. physical processes. Journal of Marine Systems, vol. 22 , pp.
173-177.
Jining Xie; Shouyan Wang; Aryasomayajula, L.; Varadan, V.K. (2007).Material and
electrochemical studies of platinum nanoparticle-coated carbon nanotubes for
biosensing. Proc. Of the IEEE Conference Nanotechnology, pp.1077 – 1080
Johannessen, E.A., Wang, L., Cui, L., Tang, T.B., Astaras, A., Ahmadian, M., Cooper, J.M.
(2004). Implementation of Multichannel Sensors for Remote Biomedical
Measurements in a Microsystems Format. IEEE Tran. Biomedical Engineering, vol.51,
issue 3, pp. 525-535.
Jovanov, E., Milenkovic, A., Otto, C., de Groen, P. (2005). A wireless body area network of
intelligent motion sensors for computer assisted physical rehabilitation. Journal of
NeuroEngineering and Rehabilitation, March, pp.2-6.
Juanola, E., Miribel-Català, P., Colomer-Fararrons, J., & Samitier, J. (2010). New green
market opportunities from novel autonomous low power systems by energy
harvesting. XXVII World Conference on Science and Technology Parks, IASP1020,
Kakerow, R., Kappert, H., Spiegel, E., and Manoli, Y. (1995). Low-power single-chip CMOS
potentiostat. Proc. of the International Conference on Solid-State Sensors and Actuators.
Katz, E., and Willner, I. (2003). Probing biomolecular interactions at conductive and
semiconductive surfaces by impedance spectroscopy: routes to impedimetric
immunosensors. DNA-sensors, and enzyme biosensors. Electroanalysis, vol. 15, pp.
913–947.
Kazazian T., and Jansen, A.J. (2004). Eco-desing and human-powered products. Proceedings
of the Electronics Goes Green 2004, 6-10 September 2004.
Khaligh, A., Zeng P., Xiaochun, W., and Yang, X. (2008). A hybrid energy scavenging
topology for human-powered mobile electronics. Proc. of the 34th Annual Conference
of IEEE Industrial Electronics, Nov. 2008 pp. 448 - 453.
Khaligh, A., Zheng, P., and Zheng, C. (2010). Kinetic Energy Harvesting Using Piezoelectric
and Electromagnetic Technologies-State of the Art. IEEE Transactions on Industrial
Electronics, vol.57, no. 3, March 2010, pp. 850-860.
Kissinger, P., Preddy, C., et.al. (1996). Laboratory Techniques in Electroanalytical Chemistry.
Second Edition, P. Kissinger, and W. Heineman Eds., Marcel Dekker, Inc.,ISBN: 0-
8247-9445-1, New York.
Kitamori, K. (2007). Micro and Nano Chemical System on Chip. Proc. of the International
Solid-State Sensors, Actuators and Microsystems Conference, pp. 11 – 16
Kiziroglou, M.E., He, C., and Yeatman, E.M. (2009). Rolling Rod Electrostatic
Microgenerator. IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1101 –
1108.
Kramer,D.L. (1987). Dissolved oxygen and fish behavior. Environmental Biology of Fishes,
vol.18, pp. 81-92 .
Kraver, K., Guthaus, M., Strong, T., Bird, P., Cha, G., Hold, W., and Brown, R. (2001). A
mixed-signal sensor interface microinstrument. Sensors and Actuators A, vol. 91, pp.
266-277.
Kros, A., Van Hovell, W.F.M, Sommerdijk, N.A.J.M., and Nolte, R.J.M. (2001). Poly(3, 4-
thylenedioxythiophene)-based glucose biosensors. Adv. Mater, vol. 13, pp. 1555–
1557.
Laureyn, W., Nelis, D., Van Gerwen, P., Baert, K., Hermans, L., Magnee, R., Pireaux, J.J., and
Maes, G. (2000). Nanoscaled interdigitated titanium electrodes for impedimetric
biosensing. Sens. Actuators B-Chem, vol. 68, pp. 360–370
Le, T.T., Han, J., Jouanne, A. Von., Mayaram, K., and Fiez, T.S. (2006). Piezoelectric Micro-
Power Generation Interface Circuits. IEEE Journal of Solid-State Circuits, vol.41, no.6,
pp. 1411-1420, June 2006.
Lee, Y.J., Kim, J.D., Park, J.Y., (2009). Flexible enzyme free glucose micro-sensor for
continuous monitoring applications. Proc. Of the Solid-State Sensors, Actuators and
Microsystems Conference, 2009, pp. 1806 - 1809
Li, W., He, S., and Yu, S. (2010). Improving Power Density of a Cantilever Piezoelectric
Power Harvester Through a Curved L-Shape Proof Mass. IEEE Transactions on
Industrial Electronics, vol.57, no.3, pp. 868-876.
Lillie, G., Payne, P., and Vadgama, P. (2001). Electrochemical impedance spectroscopy as a
platform for reagentless bioaffinity sensing. Sens. Actuators B-Chem, vol. 78, pp. 249–
256.
Liu, Y., Chakrabartty, S., and Alocilja. E.C. (2007). Fundamental building blocks for
molecular biowire based forward error-correcting biosensors. Nanotechnology, vol.
18, 424017, pp. 1-6.
Mohseni, P., Najafi, K., Eliades, S.J., Xiaoqin Wang, (2005). Wireless multichannel
biopotential recording using an integrated FM telemetry circuit. IEEE Tran. on
Neural Systems and Rehabilitation Engineering, vol. 13, issue 3, pp. 263-271
Murari, K., Sauer, C.M., Stanacevic, M., Cauwenberghs, G., and Thakor, N. (2005). Wireless
Multichannel Integrated Potentiostat for Distributed Neurotransmitter Sensing.
Prof. Of the Engineering in Medicine and Biology Conference.
Myung-suk, C., Sang-won, L., Jong-chul, K., Jun-dong, C., Jin-kwon, K., Hang-sik. S.,
Myung-ho, L., Un-sun, C., and Jae-seok, K. (2007). Implantable Bio system design
for displacement measurement of living life. Proc. of the International Conference on
Advanced Communication Technology, vol. 1, pp.299 – 304
Nasiri, A., Zabalawi, S.A., and Mandic, G. (2009). Indoor Power Harvesting Using
Photovoltaic Cells for Low-Power Applications. IEEE Transactions on Industrial
Electronics, vol. 56, no. 11, pp. 4502 – 4509.
Niyato, D., Hossain, E., Rashid, M.M., and Bhargava, V.K. (2007).Wireless sensor networks
with energy harvesting technologies: a game-theoretic approach to optimal energy
management. IEEE Wireless Communications, vol.14, no. 4, pp.90-96.
Paradiso, J.A. Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE
Pervasive Computing, vol.4, Issue 1, pp. 18-27.
Patel, J.N., Kaminska, B., Gray, B., Gates, B.D. (2007). Electro-Enzymatic Glucose Sensor
Using Hybrid Polymer Fabrication Process. Proc. Of IEEE International Conference the
Electronics, Circuits and Systems, 2007. ICECS 2007, pp. 403 – 406
Poyatos, J.M., Muñio, M.M., Almecija, M.C., Toress, J.C., Hontoria, E., and Osorio.F. (2010).
Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water
Air Soil Pollut, vol.205, pp. 187-204.
Rahman, A.R.A., Justin, G., Guiseppi-Wilson, A., Guiseppi-Elie, A., (2009). Fabrication and
Packaging of a Dual Sensing Electrochemical Biotransducer for Glucose and Lactate
Useful in Intramuscular Physiologic Status Monitoring. Sensors Journal, vol. 9, issue
12, pp. 1856 – 1863
Reay, R., Kounaves, S., and Kovacs, G. (1994). An integrated CMOS potentiostat for
miniaturized electroanalytical instrumentation. Proc. of the IEEE Solid-State Circuits
Conf.
Rodrigues, N.P., Kimura, H., Sakai, Y., Fujii, T. (2007). Cell-Based Microfluidic Biochip for
Electrochemical Real-Time Monitoring of Glucose and Oxygen. Proc. Of the Solid-
State Sensors, Actuators and Microsystems Conference, pp. 843 - 846
Rodríguez-Trujillo, R., Castillo-Fernandez, O., Garrido, M., Arundell, M., Valencia, A.,
Gomila, G. (2008). High-Speed particle detection in a micro-Coulter counter with
two-dimensional adjustable aperture. Biosensors and Bioelectronics. vol 24:2, pp. 290-
296
Rodríguez-Villarrea, A.I., Arundell, M., Carmona, M., Samitier, J. (2010) -High flow rate
microfluidic device for blood plasma separation using a range of temperaturas. Lab
on a Chip, vol 10, pp. 211-219.
Roundy, S. Steingart,D., Frechette, L., Wright, P., and Rabaey, J. (2004). Power sources for
wireless sensors networks. Proc. of the 1st European Workshop on Wireless Sensors
Networks, Jan.2004, pp. 1-17.
Sato, F., Togo, M., Islam, MK., Matsue, T., Kosuge, J., et al. (2005). Enzymebased glucose fuel
cell using Vitamin K-3-immobilized polymer as an electron mediator.
Electrochemistry Communications, vol.7, no.7, pp. 643-647.
Shenck, N.S., and Paradiso, J. (2001). Energy scavenging with shoe-mounted piezoelectrics.
IEEE Micro, Vol. 21, No. 3, May-June 2001, pp. 30-42.
Sogorb, T., Llario, J.V., Pelegri, J., Lajara, R., and Alberola, J. (2008).Studying the Feasibility
of Energy Harvesting from Broadcast RF Station for WSN. Proc. of the IEEE
Instrumentation and Measurement Technology Conference, May 2008, pp. 1360 – 1363.
Stark, J. (2006). Thermal Energy Harvesting with Thermo Life. Proc. of the International
Workshop on Wearable and Implantable Body Sensor Networks, pp.19 – 22.
Teymoori, M.M., Asadollahi, H. (2009). MEMS Based Medical Microsensors. Proc. Of the
Computer and Electrical Engineering International Conference, vol. 1, pp.158 – 162.
Terbouche, A., Djebbar, S., Benali-Baitich, O., and Hauchard, D. (2011). Complexation Study
of Humic Acids Extracted from Sahara Soils with Zuinc (II) and Cadmium (II) by
Differential Pulse Anodic Stripping Voltammetry (DPASV) and Conductimetric
Methods. Water Air Soil Pollut, vol.216, pp. 679-691.
Thewes, R., Hofmann, F., Frey, A., Holzapfl, B., Schienle, M., Paulus, C., Schindler,P.,
Eckstein, G., Kassel, C., Stanzel, M., Hintsche, R., Nebling, E., Albers, J., Hassman,
J., Schülein, J., Goemann, W., and Gumbrecht, W. (2002). Sensor Arrays for Fully-
Electronic DNA Detection on CMOS. Proc. Of the IEEE International Solid-State
Circuits Conference.
Usman Ali, S.M., Nur, O., Willander, M., Danielsson, B. (2009). Glucose Detection With a
Commercial MOSFET Using a ZnO Nanowires Extended Gate. IEEE Transactions on
Nanotechnology, vol. 8, issue 6, pp. 678 – 683.
Van Hoof, C., Leonov, V., Vullers, R.J.M. (2009). Thermoelectric and Hybrid Generators in
Wearable Devices and Clothes. Sixth International Workshop on Wearable and
Implantable Body Sensor Networks. 3-5 June, pp. 195 – 200.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Aug 21, 2018 11:44 am

29. Bolaji Aremo, Mosobalaje Oyebamiji Adeoye, Imoh Bassey Obioh, Odunayo Adetola Adeboye. A Simplified Microcontroller Based Potentiostat for Low-Resource Applications // Open Journal of Metal. – 2015. V.5. P.37-46.

Abstract: A low component count, microcontroller-based potentiostat circuit was developed through the use of operational amplifiers arranged in different feedback configurations. This was developed to alleviate the cost burden of equipment procurement in low-cost and budget applications. Simplicity was achieved in the design by the use of the microcontroller’s native functionalities and a low-cost R/2R resistor ladder digital-to-analogue converter. The potentiostat was used to investigate the Ni2+/Ni(s) redox couple in a 3-electrode cell with a silver/silver chloride reference electrode and graphite counter and working electrodes. Linear sweep voltammograms were obtained at scan rates of 10, 20, 30 and 40 mV/s. The analysis of the peak current versus (scan rate)1/2 plot indicated that the Ni2+/Ni(s) reduction, though conforming to the Randles-Sevcik equation, was a nonreversible redox reaction.

Main Figures:
Image

Image


References
[1] Bertocci, U. (1980) Applications of a Low Noise Potentiostat in Electrochemical Measurements. Journal of The Electrochemical Society, 127, 1931-1934. http://dx.doi.org/10.1149/1.2130039

[2] Blanco, J.R., Ferrero, F.J., Campo, J.C., Anton, J.C., Pingarron, J.M., Reviejo, A.J. and Manso, J. (2006) Design of Low-Cost Portable Potentiostat for Amperiometric Measurements. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Sorrento, 24-27 April 2016, 690.

[3] Ahmadi, M.M. and Jullien, G.A. (2005) A Very Low Power CMOS Potentiostat for Bioimplantable Applications.
Proceedings of the 5th International Workshop on System-on-Chip for Real-Time Applications, Banff, 20-24 July 2005, 184.

[4] Kelly, R.G., Yuan, J., Jones, S.H., Blanke, W., Aylor, J.H., Wan, W., Batson, A.P., Wintenbergand, A. and Clemefia, G.G. (1997) Proceedings of CORROSION 97, NACE International, Paper No. 294.

[5] Twomey, K., Truemperand, A. and Murphy, K. (2006) A Portable Sensing System for Electronic Tongue Operations. Sensors, 6, 1679-1696. http://dx.doi.org/10.3390/s6111679

[6] Carminati, M., Ferrari, G., Guagliardo, F., Farina, M. and Sampietro, M. (2009) Low-Noise Single-Chip Potentiostat for Nano-Bio-Electrochemistry over a 1MHz Bandwidth. Proceedings of the 16th IEEE International Conference on Electronics, Circuits, and Systems, Yasmine Hammamet, 13-16 December 2009, 876.

[7] Nawghare, P.M. (2009) Optimum Compensation and Stability of Potentiostat. International Journal of Electronics Engineering, 1, 1.

[8] Smith, J. and Hinson-Smith, V. (2002) The Potentiostat: Electrochemistry’s Utility Player. Analytical Chemistry, 539A-541A.

[9] Kubersky, P., Hamacek, A., Kroupa, M., Stulik, J. and Zwiefelhofer, V. (2012) Potentiostat Solution for Electrochemical Amperometric Gas Sensor. Proceedings of the 35th International Spring Seminar on Electronics Technology, Bad Aussee, 9-13 May 2012, 388.

[10] Mondal, S.K., Maji, U., Tudu, B. and Koley, C. (2011) Basic Taste Identification Using Voltammetric Type Electronic Tongue Technique. International Journal of Soft Computing and Engineering, 1, 49.

[11] Hwang, S. and Sonkusale, S. (2001) Ultra Low-Input Impedance CMOS Potentiostat for Environmental Sensing Applications. IEEE Sensors Journal, 10, 820 - 821.

[12] Gopinath, A.V. and Russell, D. (2006) An Inexpensive Field Portable Programmable Potentiostat. The Chemical Educator, 11, 23-28.

[13] Rowe, A.A., Bonham, A.J., White, R.J., Zimmer, M.P., Yadgar, R.J., Hobza, T.M., Honea, J.W., Ben-Yaacov, I. and Plaxco, K.W. (2011) CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational Applications. PLoS ONE, 6, e23783. http://dx.doi.org/10.1371/journal.pone.0023783

[14] Szab’o, S. and Bakos, I. (2010) Reference Electrodes in Metal Corrosion. International Journal of Corrosion, 1-20.

[15] Research Solutions & Resources LLC (2009) The Ag/AgCl Reference Electrode. Retrieved June 6, 2011, from:
http://www.consultrsr.com/resources/ref/agcl.htm

[16] Njau, K.N. and Janssen, L.J.J. (1995) Electrochemical Reduction of Nickel Ions from Dilute Solutions. Journal of Applied Electrochemistry, 25, 982-986. http://dx.doi.org/10.1007/bf00241595

[17] Lantelme, F., Seghiouer, A. and Derja, A. (1998) Model of Nickel Electrodeposition from Acidic Medium. Journal of Applied Electrochemistry, 28, 907-913. http://dx.doi.org/10.1023/A:1003404118601

[18] Grujicic, D. and Pesic, B. (2006) Electrochemical and AFM Study of Nickel Nucleation Mechanisms on Vitreous Carbon from Ammonium Sulfate Solutions. Electrochimica Acta, 51, 2678-2690.
http://dx.doi.org/10.1016/j.electacta.2005.08.017

[19] Ningthoujam, R.S., Gajbhiye, N.S. and Sharma, S. (2009) Reduction Mechanism of Ni2+ into Ni Nanoparticles Prepared from Different Precursors: Magnetic Studies. Pramana—Journal of Physics, 72, 577-586.
http://dx.doi.org/10.1007/s12043-009-0051-6

[20] Kumar, P.S. and Lakshminarayanan, V. (2009) Electrochemical Studies of Redox Probes in Self-Organized Lyotropic Liquid Crystalline Systems. Journal of Chemical Sciences, 121, 629-638. http://dx.doi.org/10.1007/s12039-009-0076-x

[21] Dolati, A., Ghorbani, M. and Ahmadi, M.R. (2005) An Electrochemical Study of Au-Ni Alloy Electrodeposition from Cyanide-Citrate Electrolytes. Journal of Electroanalytical Chemistry, 577, 1-8.
http://dx.doi.org/10.1016/j.jelechem.2004.10.024

[22] Monk, P.M.S. (2008) Fundamentals of Electroanalytical Chemistry. John Wiley & Sons, New York, 384.


<< Предыдущая страница

Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

PreviousNext

Return to Литература по теме

cron

User Menu

Login