It is currently Tue Oct 16, 2018 9:24 pm

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга


Подборка научных статей

by Admin » Sat Apr 28, 2018 12:28 pm

11. Aznar-Poveda J., Lopez-Pastor J.A., Javier. A COTS-Based Portable System to Conduct Accurate Substance Concentration Measurements // Sensors. – 2018. Vol. 18,539. P. 1-15.

Abstract: Traditionally, electrochemical procedures aimed at determining substance concentrations have required a costly and cumbersome laboratory environment. Specialized equipment and personnel obtain precise results under complex and time-consuming settings. Innovative electrochemical-based sensors are emerging to alleviate this difficulty. However, they are generally scarce, proprietary hardware and/or software, and focused only on measuring a restricted range of substances. In this paper, we propose a portable, flexible, low-cost system, built from commercial off-the-shelf components and easily controlled, using open-source software. The system is completed with a wireless module, which enables the transmission of measurements to a remote database for their later processing. A well-known PGSTAT100 Autolab device is employed to validate the effectiveness of our proposal. To this end, we select ascorbic acid as the substance under consideration, evaluating the reliability figure and obtaining the calibration curves for both platforms. The final outcomes are shown to be feasible, accurate, and repeatable.

Main Figures:



1. Lykkesfeldt, J. Determination of Ascorbic Acid and Dehydroascorbic Acid in Biological Samples
by High-Performance Liquid Chromatography Using Subtraction Methods: Reliable Reduction with
Tris[2-carboxyethyl]phosphine Hydrochloride. Anal. Biochem. 2000, 282, 89–93. [CrossRef] [PubMed]
2. Measuring Protein Concentration through Absorption Spectrophotometry. Available online: http://w3. (accessed on 25 October 2017).
3. Albert, D.B.; Martens, C.S. Determination of low-molecular-weight organic acid concentrations in seawater
and pore-water samples via HPLC. Mar. Chem. 1997, 56, 27–37. [CrossRef]
4. Conte, L.S.; Moret, S.; Purcaro, G. HPLC in food analysis. Chromatogr. Sci. Ser. 2011, 101, 561–660. [CrossRef]
5. Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Pang, T.; Lv, S.; Yang, Q. Diagnosis of liver cancer using HPLC-based
metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B
Anal. Technol. Biomed. Life Sci. 2004, 813, 59–65. [CrossRef] [PubMed]
6. Floriani, G.; Gasparetto, J.C.; Pontarolo, R.; Gonçalves, A.G. Development and validation of an HPLC-DAD
method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants
found in products based on cocaine. Forensic Sci. Int. 2014, 235, 32–39. [CrossRef] [PubMed]
7. Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. A graphene-based electrochemical sensor for sensitive
detection of paracetamol. Talanta 2010, 81, 754–759. [CrossRef] [PubMed]
8. Lazerges, M.; Bedioui, F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors.
Anal. Bioanal. Chem. 2013, 405, 3705–3714. [CrossRef] [PubMed]
9. Lautner, G.; Gyurcsányi, R.E. Electrochemical Detection of miRNAs. Electroanalysis 2014, 26, 1224–1235.
10. Hsu, P.F.; Ciou, W.L.; Chen, P.Y. Voltammetric study of polyviologen and the application of
polyviologen-modified glassy carbon electrode in amperometric detection of vitamin C. J. Appl. Electrochem.
2008, 38, 1285–1292. [CrossRef]
11. Hasslacher, C.; Kulozik, F.; Platten, I. Accuracy of self monitoring blood glucose systems in a clinical setting:
Application of new planned ISO-Standards. Clin. Lab. 2013, 59, 727–733. [CrossRef] [PubMed]
12. Nemiroski, A.; Christodouleas, D.C.; Hennek, J.W.; Kumar, A.A.; Maxwell, E.J.; Fernandez-Abedul, M.T.;
Whitesides, G.M. Universal mobile electrochemical detector designed for use in resource-limited applications.
Proc. Natl. Acad. Sci. USA 2014, 111, 11984–11989. [CrossRef] [PubMed]
13. Barberis, A.; Fadda, A.; Schirra, M.; Bazzu, G.; Serra, P.A. Detection of postharvest changes of ascorbic acid in
fresh-cut melon, kiwi, and pineapple, by using a low cost telemetric system. Food Chem. 2012, 135, 1555–1562.
[CrossRef] [PubMed]
14. Metrohm-Autolab. Available online: (accessed on 25 October 2017).
15. DropSens. Available online: (accessed on 8 February 2018).
16. PalmSens. Available online: (accessed on 22 December 2017).
17. Dryden, M.D.M.; Wheeler, A.R. DStat: A versatile, open-source potentiostat for electroanalysis and
integration. PLoS ONE 2015, 10, e0140349. [CrossRef] [PubMed]
18. Meloni, G.N. Building a microcontroller based potentiostat: A inexpensive and versatile platform for teaching
electrochemistry and instrumentation. J. Chem. Educ. 2016, 93, 1320–1322. [CrossRef]
19. Rowe, A.A.; Bonham, A.J.; White, R.J.; Zimmer, M.P.; Yadgar, R.J.; Hobza, T.M.; Honea, J.W.; Ben-Yaacov, I.;
Plaxco, K.W. CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational
Applications. PLoS ONE 2011, 6, e23783. [CrossRef] [PubMed]
20. Jalal, A.H.; Umasankar, Y.; Gonzalez, P.J.; Alfonso, A.; Bhansali, S. Multimodal technique to eliminate
humidity interference for specific detection of ethanol. Biosens. Bioelectron. 2017, 87, 522–530. [CrossRef]
21. Umasankar, Y.; Jalal, A.H.; Gonzalez, P.J.; Chowdhury, M.; Alfonso, A.; Bhansali, S. Wearable alcohol
monitoring device with auto-calibration ability for high chemical specificity. In Proceedings of the
BSN 2016—13th Annual Body Sensor Networks Conference, San Francisco, CA, USA, 14–17 June 2016;
pp. 353–358.
22. Cruz, A.F.D.; Norena, N.; Kaushik, A.; Bhansali, S. A low-cost miniaturized potentiostat for point-of-care
diagnosis. Biosens. Bioelectron. 2014, 62, 249–254. [CrossRef] [PubMed]
23. Kaushik, A.; Yndart, A.; Jayant, R.D.; Sagar, V.; Atluri, V.; Bhansali, S.; Nair, M. Electrochemical
sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients.
Int. J. Nanomed. 2015, 10, 677–685. [CrossRef]
24. Makiewicz, P.; Matias, D.; Jaskuła, M.; Biegun, M.; Penkala, K.; Mijowska, E.; El Fray, M.; Podolski, J. Accuracy
analysis of measurements in electrochemical biosensing. In IFMBE Proceedings; Springer: Singapore, 2016;
Volume 55, pp. 370–373.
25. Pisoschi, A.M.; Pop, A.; Serban, A.I.; Fafaneata, C. Electrochemical methods for ascorbic acid determination.
Electrochim. Acta 2014, 121, 443–460. [CrossRef]
26. Deutsch, M.J.; Weeks, C.E. Micro-fluorometric assay for vitamin C. J. Assoc. Off. Agric. Chem. 1965, 48,
27. Texas Instruments. Available online: on 5 December 2017).
28. Raspberry Pi 2 Model B. Available online: ... 2-model-b/
(accessed on 9 November 2017).
29. Dropsens DS110 SPE. Available online: ... brochures/
110-c110.pdf (accessed on 8 February 2018).
30. LMP91000 Sensor AFE System: Configurable AFE Potentiostat for Low-Power Chemical Sensing Applications.
Available online: (accessed on 8 February 2018).
31. J Aznar Poveda Software Repository—OPEN SOURCE CVGIT. Available online:
GITUPCT/CVGIT.git (accessed on 16 December 2017).
32. IO Rodeo SPE Adapter. Available online: ... entiostat/
products/cheapstat-screen-printed-electrode-adapters?variant=12478343814 (accessed on 16
December 2017).
33. Harris, D.C. Quantitative Chemical Analysis; WH Freeman: New York, NY, USA, 2007; Volume 42,
ISBN 0716770415.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Sat May 05, 2018 1:21 pm

12. DiazCruz A.F, Norena N., Kaushik A., Bhansali S. A low-cost miniaturized potentiostat for point-of-care diagnosis // Biosensors and Bioelectronics. – 2014. Vol. 62. P.249-254.

Abstract: This paperpresentsanovelapproachofusingaminiaturizedpotentiostat(M-P)chip(LMP91000)
to performfullrangecyclicvoltammetry(CV)measurementsforthedetectionofbiomarkers.The
LMP91000evaluationboardwasreconfigured toperformthree-electrodeCVmeasurementsinorderto
achieve electrochemicalcortisolimmunosensing.Themicroelectrodesforcortisolestimationwere
fabricated byimmobilizingmonoclonalanti-cortisolantibody(Anti-M-Cab)ontoself-assembledmono-
layer(SAM)modified Aumicroelectrodes.TheresultsobtainedusingtheM-Pwerecomparedtothose
obtained usingaconventionalpotentiostat.TheM-Pwassuccessfulinmeasuringcortisollevelsinthe
measurements onthreeelectrodesystems,enablingthedevelopmentofminiaturesystemsforpoint-
of-care (POC)diagnosis.

Main Figures:



Ahn, C.H.,Choi,J.-W.,Beaucage,G.,Nevin,J.H.,Lee,J.-B.,Puntambekar,A.,Lee,J.Y.,
Chim. Acta737,1–21.
Blanco, J.,Ferrero,F.,Campo,J.,Antón,J.,Pingarrón,J.,Reviejo,A.,Manso,J.,2006.
Design ofalow-costportablepotentiostatforamperometricbiosensors.In:
Choi, S.,Goryll,M.,Sin,L.Y.M.,Wong,P.K.,Chae,J.,2011.Microfluid. Nanofluid. 10
(2), 231–247.
Cohen, A.E.,Kunz,R.R.,2000.Sens.ActuatorsB:Chem.62(1),23–29.
Gubala, V.,Harris,L.F.,Ricco,A.J.,Tan,M.X.,Williams,D.E.,2011.Anal.Chem.84(2),
Huang, C.-Y.,Syu,M.-J.,Chang,Y.-S.,Chang,C.-H.,Chou,T.-C.,Liu,B.-D.,2007.
Biosens. Bioelectron.22(8),1694–1699.
Huey, E.,Krishnan,S.,Arya,S.K.,Dey,A.,Bhansali,S.,2012.Sens.ActuatorsB:Chem.
Justino, C.I.,Rocha-Santos,T.A.,Duarte,A.C.,2013.TrendsAnal.Chem.45,24–36.
Kaushik, A.,Vasudev,A.,Arya,S.K.,Pasha,S.K.,Bhansali,S.,2014.Biosens.
Kim, B.K.,Li,J.,Im,J.-E.,Ahn,K.-S.,Park,T.S.,Cho,S.I.,Kim,Y.-R.,Lee,W.-Y.,2012.
J. Electroanal.Chem.671,106–111.
D., 2013.Biotechnol.J.8(11),1267–1279.
Loncaric, C.,Tang,Y.,Ho,C.,Parameswaran,M.A.,Yu,H.-Z.,2012.Sens.ActuatorsB:
Chem. 161(1),908–913.
Luppa, P.B.,Müller,C.,Schlichtiger,A.,Schlebusch,H.,2011.TrendsAnal.Chem.30
(6), 887–898.
and notification platform.In:ProcedingsofIEEEInternationalWorkshopon
Morita, M.,Niwa,O.,Horiuchi,T.,1997.Electrochim.Acta42(20),3177–3183.
Design ofawearablesensorbadgeforsmartkindergarten.In:Proceedingsof
the SixthIEEEInternationalSymposiumonWearableComputers,2002(ISWC
Pasha, S.K.,Kaushik,A.,Vasudev,A.,Snipes,S.A.,Bhansali,S.,2014.J.Electrochem.
Soc. 161(2),B3077–B3082.
Poh, M.-Z.,Swenson,N.C.,Picard,R.W.,2010.IEEETrans.Biomed.Eng.57(5),
Rusling, J.F.,Kumar,C.V.,Gutkind,J.S.,Patel,V.,2010.Analyst135(10),2496–2511.
Shalev, G.,Landman,G.,Amit,I.,Rosenwaks,Y.,Levy,I.,2013.NPGAsiaMater.5(3),
Singh, A.,Kaushik,A.,Kumar,R.,Nair,M.,Bhansali,S.,2014.Appl.Biochem.
Solanki, P.R.,Kaushik,A.,Agrawal,V.V.,Malhotra,B.D.,2011.NPGAsiaMater.3(1),
Soper, S.A.,Brown,K.,Ellington,A.,Frazier,B.,Garcia-Manero,G.,Gau,V.,Gutman,
S.I., Hayes,D.F.,Korte,B.,Landers,J.L.,2006.Biosens.Bioelectron.21(10),1932–
Vasudev, A.,Kaushik,A.,Tomizawa,Y.,Norena,N.,Bhansali,S.,2013.Sens.Actuators
B: Chem.182,139–146.
design forhomehealthcare.In:EngineeringinMedicineandBiology,2002.
24th AnnualConferenceandtheAnnualFallMeetingoftheBiomedical
Engineering SocietyEMBS/BMESConference,2002.ProceedingsoftheIEEE
Second Joint,pp.1871–1872.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Fri May 11, 2018 9:07 am

13. Friedman E., Hartoto A. Low-Cost Portable Potentiostat for Biosensing Applications // Cornell University, 2010.

Abstract: This project involves the design and construction of a low-cost portable potentiostat capable of performing cyclic voltammetry on three-electrode electrochemical systems.

A potentiostat is an instrument used in chemical and biological tests that controls the voltage between two electrodes, working and reference, at a constant value. Chemical and biological tests are typically run in a three-electrode system, which includes the aforementioned working and reference electrode as well as a counter electrode. These systems are used to test the electrical activity of certain compounds or microbes, where the electrode acts as either the electron acceptor or electron donor. By monitoring the current and plotting the data against either time (chronoamperometry) or potential (voltammetry), information can be obtained as to the electrochemical activity of chemical compounds and/or microbes. For cyclic voltammetry, the potential is scanned in both the positive and negative directions at a predefined sweep rate (mV/sec), allowing the user to view both the oxidation and reduction reactions occurring. Commercially available potentiostats, while capable of performing additional techniques, often cost upwards of $5000 per channel. In addition, these commercial instruments are typically impractical for use in field research. For bio-sensing and other applications it is important for a low-cost, portable, field ready potentiostat to be available.

In this project, we will present a design for this potentiostat using the ATMega644, an external digital-to-analog converter (DAC), and a series of operational amplifiers (op-amps). We will utilize the serial peripheral interface (SPI) to communicate between the microcontroller and DAC, the op-amps to process the signal from the DAC and apply a potential to the electrochemical cell, and the internal analog-to-digital converter (ADC) to record the current at the working electrode.

Main Figures:
Figure 1: The layout of how the system is.

Figure 3: Op-amp circuitry. WE = working electrode, RE = reference electrode, and CE = counting electrode.

Figure 5: Schematic of our project.

A.V.Gopinath and D. Russell, "An Inexpensive Field Portable Programmable Potentiostat", Chem Educator, 2006. pp 23-28.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue May 22, 2018 2:21 pm

14. Economou A. S., Volikakis G. J. and Efstathiou C. E. Virtual instrumentation for electro-analytical measurements // Journal of Automated Methods & Management in Chemistry. - 1999. Vol.21, No. 2. P. 33-38.

Abstract: This paper deals with some applications of Virtual Instrumentation to electroanalytical measurements. Virtual Instruments VIs) are software programmes that simulate the external appearance andfunctions of a real instrument on the screen of a computer. In this work, programmes have been developed to control the potential of a working electrode (through a suitable potentiostat), acquire the current response, process the acquired current signal, and control a peristaltic pump and injection valve. The sequence of operations was controlled by the VI. The programmes developed have been applied to amperometric and voltammetric measurements in static andflowing solutions. The Vlpackage that has been used was Lab VIEW 4.0.1 from National Instruments.

Main Figures:



2. NATIONAL INSTRUMENTS CORPORATION, 1996, LabVIEW Data Acquisition Basics Manual.
3. GOSTOWSKI, R., 1996, Journal of Chemical Education, 7:3, 1103.
4. DREW, S., 1996, Journal of Chemical Education, 73, 1107.
5. MUYSKENS, M., GLASS, S.,WIETSMA, T. and GRAY, T., 1996, Journal of Chemical Education, 73, 1112.
6. BARD, A.J. and FAULKNER, g. R., 1980, Electrochemical Methods (NY: John Wiley), p. 565.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Sun May 27, 2018 10:28 pm

15. Kellner K., Posnicek T., Ettenauer J., Zuser K., Brandl M. A new, low-cost potentiostat for environmental measurements with an easy-to-use PC interface // Procedia Engineering. – 2015. Vol. 200. P. 956 – 960.

Abstract: A potentiostat is an electronic device for investigating the mechanisms of redox reactions and other electrochemical processes. These highly sensitive instruments allow studying the electrochemical properties of a certain analyte in solution. Nowadays, there are many high-end systems on the market that are usually supplied with a dedicated software package. However, there are only few instruments available in the low price segment. Therefore, our goal was to develop “EcoStat” a low-cost, digitally controlled potentiostat, which has several improvements compared to other inexpensive instruments; e.g. lower noise and a more stable output signal due to a digital PI controller. Furthermore, the data acquisition, visualization and filtering are managed by a comfortable, easy-to-use PC interface called “POTCON”. Additionally, EcoStat was evaluated with three other commercial potentiostats and showed a good performance compared to high-end instruments.

Main Figures:



[1] A.A. Rowe, A.J. Bonham, R.J. White, M.P. Zimmer, R.J. Yadgar, et al.: CheapStat: an open-source, “do-it-yourself” potentiostat for analytical and educational applications, PlosOne 6(9) (2011) e23783, doi:10.1371/journal.pone.0023783.

[2] R.W. Shideler, U. Bertocci: A low-noise potentiostat for the study of small amplitude signals in electrochemistry, J Res Natl Stand (1980) 85(3) 211-217.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Fri Jun 01, 2018 12:48 pm

16. Twomey K., Truemper A., K. Murphy. A Portable Sensing System for Electronic Tongue Operations // Sensors. – 2006. Vol.6. P. 1679-1696.

Abstract: A portable, low cost sensing system is described which interfaces to an electronic tongue sensor. The sensor used is a voltammetric sensor which monitors electrochemical reactions that occur in solutions. The sensor is able to test a range of liquids with different electrochemical properties without any hardware adjustments to the system. The system can automatically adjust for the change in solution properties by performing a routine which uses an auto-ranging feature to determine a current-to-voltage conversion of the sensor data by using a binary search strategy. This eliminates the intervention of the user to modify the system each time a new solution is tested. The effectiveness of the calibration routine was tested by carrying out cyclic voltammetry in two different solutions, 0.1M sulfuric acid solution and the phosphate buffered solution of pH3. The sensor system was able to accurately acquire the sensor data for each solution.

Main Figures:


1. Olafsdottir, G.; Lauzon, H.L.; Martinsdottir, E.; Kristbergsson, K. Influnce of storage temperature
on microbial spoilage characteristics of haddock fillets (Melanogrammus aeglefinus) evaluated by
multivariate quality prediction. Int. J. Food Microbiology 2006, 111(2), 112-125.
2. Di Natale, C.; Paolesse, R.; Burgio, M.; Martinelli, E.; Pennazza, G.; D’Amico, A. Application of
Metalloporyphyrins-based gas and liquid sensor arrays to the analysis of red wine. Analytica
Chimica Acta 2004, 513 (1), 49-56.
3. Brudzewski, K.; Osowski, S.; Markiewicz, T.; Classification of milk by means of an electronic
nose and SVM neural network. Sensors and Actuators B 2004, 98 (2-3), 291-298.
4. Santos, J.P.; Garcia, M.; Aliexandre, M.; Horrillo, M.C.; Gutierrez, J.; Sayago, I.; Fernandez,
M.J.; Ares, L. Electronic nose for the identification of pig feeding and ripening time in Iberian
hams, Meat Science 2004, 66 (3), 727-732.
5. Maier, B.; Reiss, G. Electronic nose and Olfaction IoP series in Sensors. Editors: Gardner, W.;
Persaud, K.C. 2000, 273-278.
6. Gostelow, P.; Parsons, S.A.; Steutz, R.M. Odour measurements for sewage treatment works.
Water Research 2001, 35 (3), 579-597.
7. Baby, R.E.; Cabenas, M.; De Reca, E.N.W. Electronic nose:a useful tool for monitoring
environmental contamination. Sensors and Actuators B 2000, 69 (3), 214-218.
8. Fend, R.; Bessant, C.; Williams, A.J.; Woodman, A.C. Monitoring haemodialysis using electronic
nose and chemometrics. Biosensors and Bioelectronics 2004, 19(12), 1581-1590.
9. Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D’Arangelo, G.; Rosciono, C.; Finazzi-
Agro, A.; D’Amico, A. Lung cancer identification by the analysis of breath be means of an array
of non-selective gas sensors. Biosensors and Bioelectronics 2003, 18 (10), 1290-1218.
10. Lin, Yuh-Jiuan, Guo, Hong-Ru, Chang, Yung-Hsien, Kao, Min-Tsung, Wang, His-Hua, Hong,
Rong-I Application of the electronic nose for uremia diagnosis. Sensors Actuators B 2001, 76 (1-
3), 177-180.
11. Ampuero, S.; Bosset, J.O. The electronic nose applied to diary products: a review. Sensors and
Actuators B 2003 94, 1-12.
12. D’Amico, A.; Di Natale, C.; Paolese, R.; Macgnano, A. Microchemical sensors for EN: trends,
problems and perspectives. ISOEN ’03 Book of abstracts, 2003, 3.
13. Lvova, L.; Paolese, R.; Di Natale, C.; D’Amico, A. Detection of alcohols in beverages: an
application of polyphyrin-based electronic tongue. Sensors and Actuators B 2006, 118 (1-2), 439-
14. Moreno, L.; Merlos, A.; Abramova, N.; Jimenez C.; Bratov, A. Multi-sensor array used as an
electronic tongue for mineral water analysis. Sensors and Actuators B 2006 116 (1-2), 130-134.
15. Riul Jr, A.; De Sousa , H.C.; Malmegrim, R.R.; Dos Santos Jr, D.S.; Carvalho, A.C.P.L.F. ,
Fonesca, F.J.; Oliveira Jr, O.N.; Mattoso, L.H.C. Wine classification by taste sensors made from
ultra-thin films and using neural networks. Sensors and Actuators B 2004, 98 (1), 77-82.
16. Lvova, L.; Legin, A.; Vlasov, Y.; Cha, G.S.; Nam, H. Multicomponent analysis of Koean green
tea by means of disposable all solid state-potentiometric electronic tongue microsystem. Sensors
and Actuators B 2003, 95 (1-3), 391-399.
17. Krantz-Rulcker, C.; Stenberg, M.; Winquist, F.; Lundstrom, I. Electronic tongues for
environmental monitoring based on sensor arrays and pattern recognition: a review. Analytica
Chimica Acta 2001, 426 (2), 217-226.
18. Di Natale, C.; Macagnano, A, Davide, F.; D’Amico, A.; Legin, A.; Vlasov, Y.; Rudnitskaya, A.;
Selezenev, B. Multicomponent analysis on polluted waters by means of an electronic tongue
Sensors and Actuators B 1997, 44 (1-3), 423-428.
19. Isz, S.; Chanie, E.; Saint-Martin, E. US20040191918A1: Evaluation of the bitterness of active
drugs. Publication date 2004-09-30.
20. Jansson, R.; Langoe, P.; Krantz-Rulcker, C.; Winquist, F. WO03046554: Analysis of urea in a
liquid by use of a electronic tongue Publication date: 2003-06-05.
21. Toko, K. Taste sensor. Sensors and Actuators B 2000, 64 (1-3), 205-215.
22. Winquist, F.; Wide, P.; Lundstrom, I.; An electronic tongue based on voltammetry, Analytica
Chimica Acta 1997 357 (1-2), 21-31.
23. Lavigne, J.; Savoy, S.; Clenenger, M.; Rtchie, J.; McDoniel, B.; Yoo, S-J.; Anslyn, E.; McDevitt,
J.; Shear, J.; Niekrirk, D. Solution-based analysis of multiple analytes by a sensor array: towards
the development of an ‘electronic tomgue’. J. Am. Chem. Soc. 1998, 120, 6429-6430.
24. Di Natale, C.; Paolesse, R.; Macgnano.;A.; Mantini, A.; D’Amico, A.; Legin, A.; Lvova, L.;
Rudnitskaya, A.; Vlasov, Y. Electronic nose and electronic tongue interpretation for improved
classification of clinical and food samples. Sensors and Actuators B 2000, 64, 15-21.
25. Winquist, F.; Lundstrom, I.; Wide, P. The combination of an electronic tongue and an electronic
nose. Sensors and Actuators B 1999 58, 512-517.
26. Soderstrom, C.; Rudnitskaya, A.; Legin, A.; Krantz-Rulcker, C. Differentiation of four
Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different
measurement techniques. Journal of Biotechnology 2005, 119 (3), 300-308.
27. Ivarsson, P.; Johansson, M.; Hojer, N.; Krantz-Rulcker, C.; Winquist, F. Supervision of rinses in a
washing machine by a voltammetric electronic tongue. Sensors and Acutators B 2005, 108 (1-2),
28. Ivarsson, P.; Holmin, S.; Hojer, N.; Krantz-Rulcker, C.; Winquist, F. Discrimination of tea by
means of a voltammetric electronic tongue and different applied waveforms. Sensors and
Actuators B 2001, 76 (1-3), 449-454.
29. Twomey, K.; Murphy, K. Investigation into the packaging and operation of an electronic tongue
sensor for industrial applications. Sensor Review 2006, 26 (3), 218-226.
30. Kounaves, S.P. ‘Voltammetric techniques’ in Handbook of instrumental techniques for analytical
chemistry Settle, F.A. (ed.) Prentice Hall Publishers, 20 June 1997, 712-713.
31., PIC16F876A datasheet.
32. Wandloqski, T.; Atak, K.; Pronkin, S.; Diesing, D. Surface enhanced infrared spectroscopy-Au(1
1 –20nm)/sulphuric acid- new aspects and challenges. Electrochimica Acta 2004, 49, 1233-1247.
33. Moller, H.; Pistorius, P.C. The electrochemistry of gold-platinum alloys. J. Electroanalytical
Chemistry 2004, 570, 242-255.
34. Kunimatsu, K.; Uchida, H.; Osawa, M.; Watanabe, M. In situ infrared spectroscopic and
electrochemical study of hydrogen electro-oxidation on Pt electrode in sulphuric acid. J.
Electroanalytical Chemistry 2006, 587, 299-307.
35. Ayad, A.; Naimi, Y.; Bouet, J.; Fauvaraque, J.F. Oxygen reduction on platinum electrode coated
with Nafion. Journal of Power Sources 2005, 130, 50-55.
36. Wu, K.; Zei, M.S. Electrochemical behaviour and structural changes of a reconstructed Pt (100)
electrode in sulphuric acid: a comparison with Pt (100)-(1x1). Surface Science 1998, 415, 212-
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Sat Jun 02, 2018 7:09 am

17. C.Y. Huang. Design of a Portable Potentiostat with Dual-microprocessors for Electrochemical Biosensors // Universal Journal of Electrical and Electronic Engineering. – 2015. Vol. 3(6). P. 159-164.

Abstract: In this paper, we design and implement a portable potentiostat by using dual-microprocessors for the signal processing of electrochemical biosensors. In our design approach, one of the microprocessors is used to design the programmable waveform generator, and the other microprocessor is used to measure the current of biosensors. The proposed potentiostat can perform general electrochemical analysis functions, including cyclic voltammetry, linear sweep voltammetry, differential pulse voltammetry, amperometry, and potentiometry. In the experiment, we adopt a commercial screen printed electrode immersed in potassium ferricyanide solution to test the performance of the proposed potentiostat and compare the proposed potentiostat’s measured results with a commercial potentiostat’s (CH Instrument Model: CHI1221) under the same test condition. The experimental results show that the proposed potentiostat has the merits of good accuracy, low cost, low power consumption, and high portability.

Main Figures:



[1] I. J. Chen, I. M. White, “Sandwich structure electrochemical assay for single stranded DNA detection,” IEEE Sensors, pp. 470-473 (2010).

[2] F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L. Carlen, R. Genov, “The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface,” IEEE Trans. on Biomedical Circuits and Systems, Vol. 4 , pp. 149 – 161 (2010).

[3] H. Glaster, in pH Measurements-Fundamentals, Methods, Applications, Instruments, Wiley-VCH, New York.

[4] R. F. B. Turner, D. J. Harrison, and H. P. Baltes, “A CMOS potentiostat for amperometric chemical sensors,” IEEE J. Solid-State Circuits, vol. 22, pp. 473-478, (1987).

[5] R. G. Kakerow, H. Kappert, E. Spiegel, and Y. Manoli, “Low power single chip CMOS potentiostat,” in Proc. Eur. Conf. Solid State Transducers, pp. 142-145, (1995).

[6] A. Bandyopadhyay, G. Mulliken, G. Cauwenberghs, and N. Thakor, “VLSI potentiostat array for distributed electrochemical neural recording,” in Proc. IEEE Int. Sym. Circuit and Syst., pp. 740-743, (2002).

[7] C.Y. Huang, I.J. Chao, J.L. Thomas, H.W. Wei, Y.F. Liang, B.D. Liu, M.H. Lee, and H.Y. Lin, “Integrated potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted poly(ethylene-co-vinyl alcohol),” Biosensors and Bioelectronics, In Press, Available online 19 August 2014.

[8] C. Y. Huang, T. C. Tsai, J. L. Thomas, M. H. Lee, B. D. Liu and H. Y. Lin,” Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors,” Biosensors and Bioelectronics, Vol. 24, Issue 8, p.2611-2617, (2009).

[9] C. Y. Huang, M. J. Syu, C. H. Chang, Y. S. Chang, B. D. Liu, and T. C. Chou, “A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting,” Biosensors and Bioelectronics, Vol. 22, Issue 8, pp. 1694-1699, (2007).

[10] M. Levine, P. Gong, R. Levicky, and K. L. Shepard, “Active CMOS Sensor Array for Electrochemical Biomolecular Detection,” IEEE J. Solid-State Circuits, vol. 43, pp. 1859-1871 (2008).

[11] M. K. Ozkan, M. I. Sezan, and A. M. Tekalp, “Adaptive motion-compensated filtering of noisy image sequences,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp. 277-290, (1993).
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Sat Jun 02, 2018 8:03 am

18. Ghodsevali E., Morneau-Gamache S., Mathault J., Landari H.,Boisselier É., Boukadoum M., Gosselin B., Miled A. Miniaturized FDDA and CMOS Based Potentiostat for Bio-Applications // Sensors. – 2017. Vol. 810. P. 1-17.

Abstract: A novel fully differential difference CMOS potentiostat suitable for neurotransmitter sensing is presented. The described architecture relies on a fully differential difference amplifier (FDDA) circuit to detect a wide range of reduction-oxidation currents, while exhibiting low-power consumption and low-noise operation. This is made possible thanks to the fully differential feature of the FDDA, which allows to increase the source voltage swing without the need for additional dedicated circuitry. The FDDA also reduces the number of amplifiers and passive elements in the potentiostat design, which lowers the overall power consumption and noise. The proposed potentiostat was fabricated in 0.18 μm CMOS, with 1.8 V supply voltage. The device achieved 5 μA sensitivity and 0.99 linearity. The input-referred noise was 6.9 μVrms and the flicker noise was negligible. The total power consumption was under 55 μW. The complete system was assembled on a 20 mm  20 mm platform that includes the potentiostat chip, the electrode terminals and an instrumentation amplifier for redox current buffering, once converted to a voltage by a series resistor. the chip dimensions were 1 mm  0.5 mm and the other PCB components were off-chip resistors, capacitors and amplifiers for data acquisition. The system was successfully tested with ferricyanide, a stable electroactive compound, and validated with dopamine, a popular neurotransmitter.

Main Figures:


1. Mulliken, G.; Naware, M.; Bandyopadhyay, A.; Cauwenberghs, G.; Thakor, N. Distributed neurochemical
sensing: In vitro experiments. In Proceedings of the IEEE 2003 International Symposium on Circuits and
Systems (ISCAS’03), Bangkok, Thailand, 25–28 May 2003; Volume 5, pp. V-13–V-16.

2. Strong, T.D.; Martin, S.M.; Franklin, R.F.; Brown, R.B. Integrated electrochemical neurosensors.
In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece,
21–24 May 2006.

3. Nazari, M.H.; Mazhab-Jafari, H.; Leng, L.; Guenther, A.; Genov, R. CMOS neurotransmitter microarray:
96-Channel integrated potentiostat with on-die microsensors. IEEE Trans. Biomed. Circuits Syst. 2013, 7,

4. Murari, K.; Thakor, N.; Stanacevic, M.; Cauwenberghs, G. Wide-range, picoampere-sensitivity multichannel
VLSI potentiostat for neurotransmitter sensing. In Proceedings of the 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS’04), San Francisco, CA,
USA, 1–5 September 2004; Volume 2, pp. 4063–4066.

5. Linert, W.; Jameson, G. Redox reactions of neurotransmitters possibly involved in the progression of
Parkinson’s Disease. J. Inorg. Biochem. 2000, 79, 319–326.

6. Perry, M.; Li, Q.; Kennedy, R.T. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 2009, 653, 1–22.

7. Mollazadeh, M.; Murari, K.; Cauwenberghs, G.; Thakor, N. Wireless micropower instrumentation for
multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 2009, 3,

8. Gore, A.; Chakrabartty, S.; Pal, S.; Alocilja, E.C. A multichannel femtoampere-sensitivity potentiostat array for biosensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 2357–2363.

9. Ayers, S.; Gillis, K.D.; Lindau, M.; Minch, B.A. Design of a CMOS potentiostat circuit for electrochemical
detector arrays. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 736–744.

10. Bozorgzadeh, B.; Schuweiler, D.R.; Bobak, M.J.; Garris, P.A.; Mohseni, P. Neurochemostat: A Neural Interface SoCWith Integrated Chemometrics for Closed-Loop Regulation of Brain Dopamine. IEEE Trans. Biomed.
Circuits Syst. 2016, 10, 654–667.

11. Kara, A.; Reitz, A.; Mathault, J.; Mehou-Loko, S.; Amirdehi, M.A.; Miled, A.; Greener, J. Electrochemical
imaging for microfluidics: A full-system approach. Lab Chip 2016, 16, 1081–1087.

12. Hasan, S.R. Stability analysis and novel compensation of a CMOS current-feedback potentiostat circuit for
electrochemical sensors. IEEE Sens. J. 2007, 7, 814–824.

13. Ahmadi, M.M.; Jullien, G.A. Current-mirror-based potentiostats for three-electrode amperometric
electrochemical sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2009, 56, 1339–1348.

14. Martin, S.M.; Gebara, F.H.; Strong, T.D.; Brown, R.B. A fully differential potentiostat. IEEE Sens. J. 2009, 9, 135–142.

15. Rodriguez-Villegas, E. A low-power wide-range IV converter for amperometric sensing applications.
IEEE Trans. Biomed. Circuits Syst. 2009, 3, 432–436.

16. Yang, C.; Huang, Y.; Hassler, B.L.;Worden, R.M.; Mason, A.J. Amperometric electrochemical microsystem
for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 160–168.

17. Ahmadi, M.M.; Jullien, G.A. A very low power CMOS potentiostat for bioimplantable applications.
In Proceedings of the IEEE Fifth International Workshop on System-on-Chip for Real-Time Applications
(IWSOC’05), Banff, AB, Canada, 20–24 July 2005; pp. 184–189.

18. Stanacevic, M.; Murari, K.; Rege, A.; Cauwenberghs, G.; Thakor, N.V. VLSI potentiostat array with
oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst.
2007, 1, 63–72.

19. Genov, R.; Stanacevic, M.; Naware, M.; Cauwenberghs, G.; Thakor, N. 16-channel integrated potentiostat for
distributed neurochemical sensing. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 2371–2376.

20. Schienle, M.; Paulus, C.; Frey, A.; Hofmann, F.; Holzapfl, B.; Schindler-Bauer, P.; Thewes, R. A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. IEEE J. Solid-State Circuits 2004, 39, 2438–2445.

21. Stanacevic, M.; Murari, K.; Cauwenberghs, G.; Thakor, N. 16-channel wide-range VLSI potentiostat array.
In Proceedings of the 2004 IEEE International Workshop on Biomedical Circuits and Systems, Singapore,
1–3 December 2004; pp. S1–S7.

22. Zoski, C.G. Handbook of Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2006.

23. Nazari, M.H.; Genov, R. A fully differential CMOS potentiostat. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 2177–2180.

24. Wang,W.S.; Kuo,W.T.; Huang, H.Y.; Luo, C.H. Wide dynamic range CMOS potentiostat for amperometric
chemical sensor. Sensors 2010, 10, 1782–1797.

25. Sackinger, E.; Guggenbuhl, W. A versatile building block: The CMOS differential difference amplifier. IEEE
J. Solid-State Circuits 1987, 22, 287–294.

26. Mahmoud, S.A.; Soliman, A.M. The differential difference operational floating amplifier: A new block for
analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1998,
45, 148–158.

27. Soltan, A.; Soliman, A.M. A CMOS differential difference operational mirrored amplifier. AEU-Int. J.
Electron. Commun. 2009, 63, 793–800.

28. Alzaher, H.; Ismail, M. A CMOS fully balanced differential difference amplifier and its applications.
IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2001, 48, 614–620.

29. Harrison, R.R. A versatile integrated circuit for the acquisition of biopotentials. In Proceedings of the 2007 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 16–19 September 2007; pp. 115–122.

30. Baker, R.J. CMOS: Circuit Design, Layout, and Simulation; John Wiley & Sons: Hoboken, NJ, USA, 2008;
Volume 1.

31. Gosselin, B.; Sawan, M.; Chapman, C.A. A low-power integrated bioamplifier with active low-frequency
suppression. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 184–192.

32. Prakash, S.B.; Abshire, P.; Urdaneta, M.; Christophersen, M.; Smela, E. A CMOS potentiostat for control
of integrated MEMS actuators. In Proceedings of the 2006 IEEE International Symposium on Circuits and
Systems (ISCAS 2006), Kos, Greece, 21–24 May 2006.

33. Al Mamun, K.A.; McFarlane, N. A CMOS potentiostatic glucose monitoring system for VACNF amperometric
biosensors. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS),
Lisbon, Portugal, 24–27 May 2015; pp. 477–480.

34. Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A.J. CMOS Electrochemical Instrumentation for Biosensor
Microsystems: A Review. Sensors 2017, 17, 74.

35. Kuno, T.; Niitsu, K.; Nakazato, K. Amperometric electrochemical sensor array for on-chip simultaneous
imaging. Jpn. J. Appl. Phys. 2014, 53, 04EL01.

36. Niitsu, K.; Ota, S.; Gamo, K.; Kondo, H.; Hori, M.; Nakazato, K. Development of Microelectrode Arrays
Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells. IEEE Trans. Biomed.
Circuits Syst. 2015, 9, 607–619.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Fri Jun 08, 2018 3:35 pm

19. J. Jung., J.Lee., S. Shin and Y. T. Kim. Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer // Sensors. – 2017. Vol. 17. P. 1-9.

Abstract: In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9  3.25 cm2 with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride (RuIII) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication.

Main Figures:



1. Ahmed, M.U.; Saaem, I.;Wu, P.C.; Brown, A.S. Brown, Personalized diagnostics and biosensors: A review
of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196.
[CrossRef] [PubMed]
2. Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface.
Electochim. Acta 2010, 55, 5561–5568. [CrossRef]
3. Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-care testing (POCT): Current techniques and
future perspectives. TrAC Trends Anal. Chem. 2011, 30, 887–898. [CrossRef]
4. Ahmadi, M.M.; Jullien, G.A. Current-mirror-based potentiostats for three-electrode amperometric
electrochemical sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2009, 56, 1339–1348. [CrossRef]
5. Huang, C.Y.; O’Hare, D.; Chao, I.J.; Wei, H.W.; Liang, Y.F.; Liu, B.D.; Lee, M.H.; Lin, H.Y. Integrated
potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted
poly(ethylene-co-vinyl alcohol). Biosens. Bioelectron. 2015, 67, 208–213. [CrossRef] [PubMed]
6. Martin, S.M.; Gebara, F.H.; Strong, T.D.; Brown, R.B. A low-voltage, chemical sensor interface for
systems-on-chip: The fully-differential potentiostat. In Proceedings of the 2004 International Symposium on
Circuits, 2004 (ISCAS’04), Vancouver, BC, Canada, 23–26 May 2004; Volume 4, pp. 892–895.
7. Blanco, J.R.; Ferrero, F.J.; Campo, J.C.; Anton, J.C.; Pingarron, J.M.; Reviejo, A.J.; Manso, J. Design of a
low-cost portable potentiostat for amperometric biosensors. In Proceedings of the Instrumentation and
Measurement Technology Conference, 2006 (IMTC 2006), Sorrento, Italy, 24–27 April 2006.
8. Schneider, H.G.; Ablitt, P.; Taylor, J. Improved sensitivity of point of care troponin I values using reporting to
below 99th percentile of normal. Clin. Biochem. 2013, 46, 979–982. [CrossRef] [PubMed]
9. Park, S.; Yang, H. Sensitive and selective trypsin detection using redox cycling in the presence of L-ascorbic acid. Analyst 2014, 139, 4051–4055. [CrossRef] [PubMed]
10. Skládal, P. Electrochemical detection for biological identification. In Biological Identification: DNA Amplification
and Sequencing, Optical Sensing, Lab-On-Chip and Portable Systems; Schaudies, R.P., Ed.; Woodhead Publishing:
Sawston, Cambridge, UK, 2014; pp. 131–152.
11. Lei, Y.; Luo, N.; Yan, X.; Zhao, Y.; Zhang, G.; Zhang, Y. A highly sensitive electrochemical biosensor based on
zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale 2012, 4, 3438–3443. [CrossRef] [PubMed]
12. Li, J.; Feng, H.; Li, J.; Feng, Y.; Zhang, Y.; Jiang, J.; Qian, D. Fabrication of gold nanoparticles-decorated
reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant
Sudan I. Electrochim. Acta 2015, 167, 226–236. [CrossRef]
13. Steinberg, M.D.; Lowe, C.R. A micropower amperometric potentiostat. Sens. Actuators B Chem. 2004, 97,
284–289. [CrossRef]
14. Kaushik, A.; Tiwari, S.; Jayant, R.D.; Vashist, A.; Nikkhah-Moshaie, R.; El-Hage, N.; Nair, M. Electrochemical
Biosensors for Early Stage Zika Diagnostics. Trends Biotechnol. 2017, 35, 308–317. [CrossRef] [PubMed]
15. Vasudev, A.; Kaushik, A.; Tomizawa, Y.; Norena, N.; Bhansali, S. An LTCC-based microfluidic system for
label-free, electrochemical detection of cortisol. Sens. Actuators B Chem. 2013, 182, 139–146. [CrossRef]
16. Kaushik, A.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Nair, M. Nano-biosensors to detect beta-amyloid for
Alzheimer’s disease management. Biosens. Bioelectron. 2016, 80, 273–287. [CrossRef] [PubMed]
17. Cosnier, S. Electrochemical Biosensors; Pan Stanford Publishing: Singapore, 2014; p. 112.
18. Kaushik, A.; Tiwari, S.; Jayant, R.D.; Marty, A.; Nair, M. Towards detection and diagnosis of Ebola virus
disease at point-of-care. Biosens. Bioelectron. 2016, 75, 254–272. [CrossRef] [PubMed]
19. Kaushik, A.; Yndart, A.; Jayant, R.D.; Sagar, V.; Atluri, V.; Bhansali, S.; Nair, M. Electrochemical
sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients.
Int. J. Nanomed. 2015, 10, 677–685.
20. Jung, W.; Han, J.; Choi, J.W.; Ahn, C.H. Ahn, Point-of-care testing (POCT) diagnostic systems using
microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [CrossRef]
21. Cruz, A.F.D.; Norena, N.; Kaushik, A.; Bhansali, S. A low-cost miniaturized potentiostat for point-of-care
diagnosis. Biosens. Bioelectron. 2014, 62, 249–254. [CrossRef] [PubMed]
22. Pruna, R.; Palacio, F.; Baraket, A.; Bausells, J.; Errachid, A.; López, M. Low-Cost Impedance Measurements
for Lab-on-a-Chip Architectures: Towards Potentiostat Miniaturization. Multidiscip. Digit. Publ. Inst. Proc.
2017, 1, 604. [CrossRef]
23. Leonardi, S.G.; Bonyani, M.; Ghosh, K.; Dhara, A.K.; Lombardo, L.; Donato, N.; Neri, G. Development of a
Novel Cu (II) Complex Modified Electrode and a Portable Electrochemical Analyzer for the Determination
of Dissolved Oxygen (DO) in Water. Chemosensors 2016, 4, 7. [CrossRef]
24. Richter, E.M.; Tormin, T.F.; Cunha, R.R.; Silva, W.P.; Pérez-Junquera, A.; Fanjul-Bolado, P.;
Hernández-Santos, D. A Compact Batch Injection Analysis Cell for Screen Printed Electrodes: A Portable
Electrochemical System for On-site Analysis. Electroanalysis 2016, 28, 1856–1859. [CrossRef]
25. Kotanen, C.N.; Guiseppi-Elie, A. Characterization of a wireless potentiostat for integration with a novel
implantable biotransducer. IEEE Sens. J. 2014, 14, 768–776. [CrossRef]
26. Kadri, N.A.; Hoettges, K.F.; Hughes, M.P. Microelectrode fabrication using Indium Tin Oxide (ITO) for
microfluidic devices employing dielectrophoresis. In Proceedings of the 4th Kuala Lumpur International
Conference on Biomedical Engineering, Kuala Lumpur, Malaysia, 25–28 June 2008; pp. 719–722.
27. Jung, J.; Lee, J.; Lee, J.; Kim, Y.T. A smartphone-based U-Healthcare system for real-time monitoring of acute
myocardial infarction. Int. J. Commun. Syst. 2015, 28, 2311–2325. [CrossRef]
28. Hong, C.H.; Shin, J.H.; Ju, B.K.; Kim, K.H.; Park, N.M.; Kim, B.S.; Cheong,W.S. Index-matched indium tin
oxide electrodes for capacitive touch screen panel applications. J. Nanosci. Nanotechnol. 2013, 13, 7756–7759.
[CrossRef] [PubMed]
29. Kim, D.; Goldberg, I.B.; Judy, J.W. Microfabricated electrochemical nitrate sensor using double-potential-step
chronocoulometry. Sens. Actuators B Chem. 2009, 135, 618–624. [CrossRef]
30. Dutta, G.; Park, S.; Singh, A.; Seo, J.; Kim, S.; Yang, H. Low-Interference Washing-Free Electrochemical
Immunosensor Using Glycerol-3-phosphate Dehydrogenase as an Enzyme Label. Anal. Chem. 2015, 87,
3574–3578. [CrossRef] [PubMed]
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Jun 21, 2018 10:04 am

20. Ainla A., Mousavi M., Tsaloglou M., Redston J., Bell J., Fernández-Abedul M., and Whitesides G. Open-Source Potentiostat for Wireless Electrochemical Detection with Smartphones // Anal. Chem. – 2018. Vol.90. P. 6240−6246.

Abstract: This paper describes the design and characterization of an open-source “universal wireless electrochemical detector” (UWED). This detector interfaces with a smartphone (or a tablet) using “Bluetooth Low Energy” protocol; the smartphone provides (i) a user interface for receiving the experimental parameters from the user and visualizing the result in real time, and (ii) a proxy for storing, processing, and transmitting the data and experimental protocols. This approach simplifies the design, and decreases both the size and the cost of the hardware; it also makes the UWED adaptable to different types of analyses by simple modification of the software. The UWED can perform the most common electroanalytical techniques of potentiometry, chronoamperometry, cyclic voltammetry, and square wave voltammetry, with results closely comparable to benchtop commercial potentiostats. Although the operating ranges of electrical current and voltage of the UWED (±1.5 V, ±180 μA) are more limited than most benchtop commercial potentiostats, its functional range is sufficient for most electrochemical analyses in aqueous solutions. Because the UWED is simple, small in size, assembled from inexpensive components, and completely wireless, it offers new opportunities for the development of affordable diagnostics, sensors, and wearable devices.

Main Figures:


(1) Bandodkar, A. J.; Wang, J. Trends Biotechnol. 2014, 32, 363−371.

(2) Windmiller, J. R.; Wang, J. Electroanalysis 2013, 25, 29−46.

(3) Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J. A.; Srisa-Art, M.; Henry, C. S. Electroanalysis 2016, 28, 1420−1436.

(4) Pedrero, M.; Campuzano, S.; Pingarrón, J. M. Electroanalysis 2014, 26, 1132−1153.

(5) Labib, M.; Sargent, E. H.; Kelley, S. O. Chem. Rev. 2016, 116, 9001−9090.

(6) Duffy, G. F.; Moore, E. J. Anal. Lett. 2017, 50, 1−32.

(7) Wang, J.; Rivas, G.; Cai, X.; Palecek, E.; Nielsen, P.; Shiraishi, H.; Dontha, N.; Luo, D.; Parrado, C.; Chicharro, M.; Farias, P. A. M.; Valera, F. S.; Grant, D. H.; Ozsoz, M.; Flair, M. N. Anal. Chim. Acta 1997, 347, 1−8.

(8) Hanrahan, G.; Patil, D. G.; Wang, J. J. Environ. Monit. 2004, 6, 657−664.

(9) Wang, Y.; Xu, H.; Zhang, J.; Li, G. Sensors 2008, 8, 2043−2081.

(10) Umek, R. M.; Lin, S. W.; Vielmetter, J.; Terbrueggen, R. H.; Irvine, B.; Yu, C. J.; Kayyem, J. F.; Towanto, H.; Blackburn, G. F.; Farkas, D. H.; Chen, Y.-P. J. Mol. Diagn. 2001, 3, 74−84.

(11) Bandodkar, A. J.; Jia, W.; Wang, J. Electroanalysis 2015, 27, 562−572.

(12) Gumpu, M. B.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B. Sens. Actuators, B 2015, 213, 515−533.

(13) Portable potentiostats, Metrohm, ... stats.html, accessed Jan 4, 2018.

(14) Portable potentiostat, BioLogic Science Instruments, ... lvanostat/, accessed Jan 4, 2018.

(15) EmStat, PalmSens Compact Electrochemical Interfaces,, accessed Jan 4, 2018.

(16) Wang, C.-C.; Hennek, J. W.; Ainla, A.; Kumar, A. A.; Lan, W.-J.; Im, J.; Smith, B. S.; Zhao, M.; Whitesides, G. M. Anal. Chem. 2016, 88, 6326−6333.

(17) Nie, Z.; Deiss, F.; Liu, X.; Akbulut, O.; Whitesides, G. M. Lab Chip 2010, 10, 3163−3169.

(18) Dryden, M. D. M.; Wheeler, A. R. PLoS One 2015, 10, e0140349.

(19) Rowe, A. A.; Bonham, A. J.; White, R. J.; Zimmer, M. P.; Yadgar, R. J.; Hobza, T. M.; Honea, J. W.; Ben-Yaacov, I.; Plaxco, K. W. PLoS One 2011, 6, e23783.

(20) Nemiroski, A.; Christodouleas, D. C.; Hennek, J. W.; Kumar, A. A.; Maxwell, E. J.; Fernández-Abedul, M. T.; Whitesides, G. M. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 11984−11989.

(21) Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D.-H.; Brooks, G. A.; Davis, R. W.; Javey, A. Nature 2016, 529, 509−514.

(22) Imani, S.; Bandodkar, A. J.; Mohan, A. M. V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P. P. Nat. Commun. 2016, 7, 11650.

(23) Panneer Selvam, A.; Muthukumar, S.; Kamakoti, V.; Prasad, S. Sci. Rep. 2016, 6, 23111.

(24) Rose, D. P.; Ratterman, M. E.; Griffin, D. K.; Hou, L.; Kelley- Loughnane, N.; Naik, R. R.; Hagen, J. A.; Papautsky, I.; Heikenfeld, J. C. IEEE Trans. Biomed. Eng. 2015, 62, 1457−1465.

(25) Giordano, G. F.; Vicentini, M. B. R.; Murer, R. C.; Augusto, F.; Ferrão, M. F.; Helfer, G. A.; da Costa, A. B.; Gobbi, A. L.; Hantao, L. W.; Lima, R. S. Electrochim. Acta 2016, 219, 170−177.

(26) Sun, A. C.; Yao, C.; Venkatesh, A. G.; Hall, D. A. Sens. Actuators, B 2016, 235, 126−135.

(27) Christidis, K.; Gow, K.; Robertson, P.; Pollard, P. Rev. Sci. Instrum. 2006, 77.

(28) Cruz, A. F. D.; Norena, N.; Kaushik, A.; Bhansali, S. Biosens. Bioelectron. 2014, 62, 249−254.

(29) Hwang, S.; Sonkusale, S. IEEE Sens. J. 2010, 10, 820−821.

(30) Jeanneret, S.; Crespo, G. A.; Ghahraman Afshar, M.; Bakker, E. Sens. Actuators, B 2015, 207, 631−639.

(31) Kappes, T.; Schnierle, P.; Hauser, P. C. Anal. Chim. Acta 1999, 393, 77−82.

(32) Steinberg, M. D.; Lowe, C. R. Sens. Actuators, B 2004, 97, 284− 289.

(33) Steinberg, M. D.; Kassal, P.; Kereković, I.; Steinberg, I. M. Talanta 2015, 143, 178−183.

(34) Dryden, M. D. M.; Fobel, R.; Fobel, C.; Wheeler, A. R. Anal. Chem. 2017, 89, 4330−4338.

(35) Dobbelaere, T.; Vereecken, P. M.; Detavernier, C. HardwareX 2017, 2, 34−49.

(36) Number of mobile phone users worldwide from 2013 to 2019, Statista, ... worldwide/, accessed Jan 4, 2018.

(37) Number of smartphone users worldwide from 2014 to 2020,
Statista, ... martphone-
users-worldwide/, accessed Jan 4, 2018.

(38) Tsaloglou, M.-N.; Nemiroski, A.; Camci-Unal, G.; Christodouleas, D. C.; Murray, L. P.; Connelly, J. T.; Whitesides, G. M. Anal. Biochem. 2018, 543, 116−121.

(39) Buhlmann, P.; Chen, L. D. In Supramolecular Chemistry: From Molecules to Nanomaterials, Steed, J. W., Gale, P. A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2012.

(40) Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals
and Applications, 2nd ed.; John Wiley & Sons: New York, 2009.

<< Предыдущая страница

Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am


Return to Литература по теме


User Menu