It is currently Wed Oct 17, 2018 4:34 am

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

Вольтамперометрия

Подборка научных статей

by Admin » Tue Apr 03, 2018 4:14 pm

phpBB [media]
phpBB [media]
(Видео Gary Mabbott)

В данном разделе будут выкладываться научные статьи, посвященные вольтамперометрическому методу анализа, а также новым приборам и разработкам для вольтамперометрии.

1. Deluzarche M, Zimmerlin E. Réalisation d’un potentiostat Tracé de courbes intensité-potentiel // Bulletin de l’ union des physicians. – 2002. Vol. 96. P. 103-111.

Abstract: L’article décrit le principe de construction d’un potentiostat accompagné des schémas électroniques permettant sa réalisation. Suivent quelques exemples de tracés de courbes intensité-potentiel appliqués à l’étude de cinétiques électrochimiques, de passivation, et de réduction de l’eau sur différents métaux.

Main Figures:

ImageImage

References
[1] PRÉVOTEAU D. et RIPERT C. Mise en évidence expérimentale de la cinétique de
l’oxydoréduction à une électrode. Tracé de courbes intensité de courant - potentiel.
Bull. Un. Phys., octobre 1992, vol. 86, n° 747, p. 1231-1238.

[2] ZANN D. Méthodes électrochimiques de détection du point équivalent de titrages :
interprétation à l’aide des courbes intensité - potentiel. Bull. Un. Phys., juin 1996,
vol. 90, n° 785 (2), p. 37-57.

[3] TACKETT S.L. et KNOWLES J.A. J. Chem. Ed., 1966, 43, 1966, p 428-431.

[4] TACKETT S.L. et KNOWLES J.A. J. Chem. Ed., 1967, 44, 1967, p 361

[5] POMEROY R.S., DENTON M.B. et AMSTRONG N.R. J. Chem. Ed., 1989, 66, p. 877-880.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Wed Apr 04, 2018 1:43 pm

2. Ashwini V., Dale R. An Inexpensive Field-Portable Programmable Potentiostat // Chem. Educator. – 2005. Vol.10. P. 1-6.

Abstract: The design and construction of a small, simple, rugged, inexpensive programmable potentiostat is presented. This experiment is intended for students in advanced analytical and integrated laboratory courses, in which students often study electronics and build instruments in order to better understand design, function, and optimization. It is also suitable for independent student projects in analytical instrumentation or electrochemistry, including projects involving field-portable electrochemical instrumentation. Advanced high school students interested in chemical instrumentation would find it within their ability as a special project provided they have a working knowledge of electronic circuits. This experiment requires students to use electronic devices and components, including op amps, to build a control circuit for electroanalytical experiments. The total cost of this potentiostat is less than $50 making it cost effective for individual or small-group experiments and special projects. Potentiostat dimensions are 3 cm × 13 cm on a printed circuit board. The simple circuit presented here is solid state, amenable to battery-powered operation, and if interfaced to an appropriate electrochemical cell, can be used as a rugged, field-portable electrochemical sensor system for monitoring environmental contaminants. Test results using potassium ferricyanide in cyclic voltammetric mode are presented to show the operation of the instrument. Linear correlation of anodic and cathodic peak heights with analyte concentration is demonstrated though a range of concentrations with a correlation factor of greater than 0.99.

Main Figures:
Image
ImageImage

Image
Image

ImageImage

References
1. Reay, R. J.; Kounaves, S. P.; Kovacs, G. T. A. Microfabricated Electrochemical Analysis System for Heavy Metal Detection. Presented at the 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, June 25–29, 1995, Digest of Technical Papers, Vol 2; pp 932–935.

2. Shults, M. C.; Rhodes, R. K.; Updike, S. J.; Gilligan, B. J.; Reining, W. N. IEEE Trans. Biomed. Eng. 1994, 41 (10), 937–942.

3. Bandyopadhyay, A.; Mulliken, G.; Cauwenberghs, G.; Thakor, N. 2002, 2, 26–29.

4. (a) Tan, Y.-J. J. Corrosion Sci. and Engr. 2005, 1 (11); (b) Cottis, R. A.; Turgoose, S.; Mendoza, J. Electrochemical noise measurement for corrosion applications. ASTM STP 1277; Kearns, J. R., Ed.; 1996; p 93.

5. Russell, D. D.; Meyer, R. L.; Davis, N., G.; Jubran, N.; Moudry, R.; Tokarski, Z.; Lee, H.-K. J. Imaging Sci. Tech., submitted.

6. Hall, S. R.; Milne, B.; Loomis, C. Anesthesiology 1999, 90 (1), 165–173.

7. (a) Armstrong, F. S.; Camba, R; Heering, H. A.; Hirst, J; Jeuken, L. J.; Jones, A. K.; Leger, C.; McEvoy, J. P. Faraday Discuss. 2000, 116, 191–203; (b) Brevnov, D. A.; Finklea, H. O. J. Electrochem. Soc. 2000, 147, 3461–3466.

8. Bard, A. J.; Faulkner,L. R. In Electrochemical Methods–Fundamentals and Applications; Wiley & Sons: New York, 1980; p 566.

9. This is explained extensively at http://www.arcelect.com/rs232.htm (accessed Nov 2005).

10. RS232 Data Interface, A Tutorial on Data Interface and Cables. http://www.arcelect.com/rs232.htm (accessed Nov 2005).

11. Salvador, S.; Chan, P. Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation Algorithms. Department of Computer Science Technical Report CS−2003-18, Florida Institute of Technology, 2003.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Apr 05, 2018 2:10 pm

3. Avdikosa E.M., Prodromidis M.I., Efstathiou C.E. Construction and analytical applications of a palm-sized microcontroller-based amperometric analyzer // Sensors and Actuators B. – 2005. Vol. 107. P. 372–378.

Abstract: The design and development of a palm-sized (9 cm×11 cm×3 cm), cost-effective, microcontroller-operated analyzer for direct amperometric measurements is described. The low-power-consumption electronics used allow 8 h of autonomous operation with a 9V battery (110 mAh), making thus this unit suitable for in-field measurements. Its operation is based mainly on the simple two-electrode potentiostatic mode, although the three-electrode mode is an option. The use of a microcontroller combined with analog and digital supporting circuits allows: (i) generation of the applied potential and the acquisition of analog signals with a gain auto-scaling capability; (ii) interaction with the operator for setting the measurement parameters; (iii) processing of data and displaying result on an LCD screen. Numerical data are automatically stored in memory and they can be retrieved by a personal computer through an RS232 port, either for creating measurements archives or for advanced processing. For this purpose, a program has been developed (on the LabVIEW platform) to provide a user-friendly graphical interface. The utility of this amperometric analyzer was assessed by performing experiments for the determination of ascorbic acid in standard solutions and pharmaceutical tablets.

Main Figures:
Image

References
[1] F. Scheller, F. Schubert, Biosensors, Elsevier, Amsterdam, 1992.

[2] M.I. Prodromidis, M.I. Karayannis, Enzyme based amperometric biosensors for food analysis, review, Electroanalysis 14 (4) (2002) 241–261.

[3] C.C. Rheney, J.K. Kirk, Performance of three blood glucose meters, Ann. Pharmacother. 34 (3) (2000) 317–321.

[4] C.E. Pennell, M.B. Tracy, A new method for rapid measurement of lactate in fetal and neonatal blood, Aust. N.Z.J. Obstet. Gynaecol. 39 (2) (1999) 227–233.

[5] Anon., Biased Operation of 7H Sensors. Application note 8, No. 1, City Technology Ltd., Portsmouth, UK, 1999.

[6] C. Papadea, J. Foster, S. Grant, S.A. Ballard, J.C. Cate IV, W.M. Southgate, D.M. Purohit, Evaluation of the i-STAT portable clinical analyzer for point-of-care blood testing in the intensive care units
of a university children’s hospital, Ann. Clin. Lab. Sci. 32 (2002) 231–243.

[7] T. Fang, M. McGrath, D. Diamond, M.R. Smyth, Development of a computer controlled multichannel potentiostat for applications with flowing solution analysis, Anal. Chim. Acta 305 (1995) 347–358.

[8] M.D. Steinberg, C.R. Lowe, A micropower amperometric potentiostat, Sens. Actuators B 97 (2004) 284–289.

[9] K.-S. Yun, J. Gil, J. Kim, H.-J. Kim, K. Kim, D. Park, M.S. Kim, H.
Shin, K. Lee, J. Kwak, E. Yoon, A miniaturized low-power wireless remote
environmental monitoring system based on electrochemical analysis, Sens. Actuators B, in press.

[10] A. Economou, S.D. Bolis, C.E. Efstathiou, G.J. Volikakis, A ‘virtual’
electroanalytical instrument for square wave voltammetry, Anal. Chim. Acta 467 (2002) 179–188.

[11] W. Sansen, D. De Wachter, L. Callewaert, L. Lambrechts, A. Claes, A smart sensor for the voltammetric measurement of oxygen or glucose concentrations, Sens. Actuators B: Chem. 1 (1–6) (1990) 298–302.

[12] PalmSens Potenstiotat, Palm Instruments BV, Houten, The Netherlands.

[13] J. Khandurina, A. Guttman, Bioanalysis in microfluidic devices, J. Chromatogr. A 943 (2) (2002) 159–183.

[14] M.D. Steinberg, An Implantable Glucose Biosensor, PhD Thesis, Institute of Biotechnology,
University of Cambridge, 1998.

[15] Erasmus Technology LLP, Cambridge, UK.

[16] A.P. Malvino, Electronic Principles, 6th ed., McGraw-Hill, New York, 1998.

[17] Installation guide and instruction for users, AUTOLAB Electrochemical Analyzers, Eco Chemie, The Netherlands, 2004.

[18] A.B. Florou, M.I. Prodromidis, M.I. Karayannis, S.M. TzouwaraKarayanni, Flow Electrochemical determination of ascorbic acid in real samples using a glassy carbon electrode modified with a cellulose
acetate film bearing 2,6-dichlophenolindophenol, Anal. Chim. Acta 409 (1–2) (2000) 113–121.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Apr 05, 2018 2:41 pm

4. Cardoso J.L., Menezes L.E., Emeri J.L. Construction and Evaluation of an Opto-Coupled Potentiostat with a PC/PDA Interface // Instrumentation Science and Technology. – 2008. Vol. 36. P. 623–635.

Abstract: The design, construction, and characterization of a portable optocoupled
potentiostat are presented. The potentiostat is battery-powered, managed by a microcontroller, which implements cyclic voltammetry (CV) using suitable sensor electrodes. Its opto-coupling permits a wide range of current measurements, varying from mA to nA. Two software interfaces were developed to perform the CV measurement: a virtual instrument for a personal computer (PC) and a C-base interface for personal digital assistant (PDA). The potentiostat has been evaluated by detection of potassium ferrocyanide in KCl medium, both with macro and microelectrodes. There was good agreement between the instrumental results and those from commercial equipment.

Main Figures:
Image
Image
Image

References
1. Beni, V.; Ogurtsov, V.I.; Bakunin, N.V. Development of a Portable Electroanalytical
System for the Stripping Voltammetry of Metals: Determination of
Copper in Accetic Acid Soil Extracts. Anal. Chim. Acta 2005, 552, 190–200.
2. Economou, A.; Bolis, S.D.; Efstathiou, C.E. A ‘‘Virtual’’ Electroanalytical
Instrument for Square Wave Voltammetry. Anal. Chim. Acta 2002, 467,
179–188.
3. Uhlig, A.; Paeschke, M.; Schnakenberg, U. Chip-Array Electrodes for Simultaneous
Stripping Analysis of Trace Metals. U. Sensors and Actuators B.
1995, 24–25, 899–903 (1995).
4. Niu, L.M.; Li, N.B.; Kang, W.J. Electrochemical Behavior of Uric Acid at a
Penicillamine Self-Assembled Gold Electrode. Microchim. Acta 2007, 159,
57–63.
5. Shervedani, R.K.; Bagherzadeh, M.; Mozaffari, S.A. Determination of
Dopamine in the Presence of High Concentration of Ascorbic Acid by Using
Gold Cysteamine Self-Assembled Monolayers as a Nanosensor. Sens. Actuat.
B 2006, 115, 614–621.
6. Demircan, S.; Kir, S.; Ozkan, S.A. Electroanalytical Characterization of
Verapamil and its Voltammetric Determination in Pharmaceuticals and
Human Serum. Anal. Lett. 2007, 40, 1177–1195.
7. Gopalan, A.I.; Lee, K.P.; Manesh, K.M. Electrochemical Determination of
Dopamine and Ascorbic Acid at a Novel Gold Nanoparticles Distributed
Poly (4-aminothiophenol) Modified Electrode. Talanta 2007, 71, 1774–1781.
8. Okumura, L.L.; Stradiotto, N.R. Simultaneous Determination of Neutral
Nitrogen Compounds in Gasoline and Diesel by Differential Pulse Voltammetry.
Talanta 2007, 72, 1106–1113.
9. Paixao, T.R.L.C.; Cardoso, J.L.; Bertotti, M. The Use of a Copper Microelectrode
to Measure the Ethanol Content in Gasohol Samples. Fuel 2007,
86, 1185–1191.
10. PalmSens Potenstiotat, Palm Instruments BV, Houten, The Netherlands.
11. Autolab Electrochemical Analyzers, Eco Chemie, The Netherlands.
12. BASi CV-50W Voltammetric Analyzer, BASi, USA.
13. Huang, C.Y.; Syu, M.J.; Chang, Y.S. A Portable Potentiostat for the
Bilirubin-Specific Sensor Prepared from Molecular Imprinting. Biosens.
Bioelectron. 2007, 22, 1694–1699.
14. Steinberg, M.D.; Lowe, C.R. A Micropower Amperometric Potentiostat.
Sens. Actuat. B 2004, 97, 284–289.
15. Matos, R.C.; Angnes, L.; Lago, C.L. Development of a Four-Channel Potentiostat
for Amperometric Detection in Flow Injection Analysis. Instrum. Sci.
Technol. 1998, 26, 451–459.
16. Kwakye, S.; Baeumner, A. An Embedded System for Portable Electrochemical
Detection. Sens. Actuat. B 2007, 123, 336–343.
17. http://www.palmsens.com/
18. Cardoso, J.L.; Emeri, J.L.; Fontes, M.B.A.; Rubio, M.R.G. Desenvolvimento
de um Potenciostato Isolado opticamente para Detecc¸a˜o de baixas correntes.
Proc. V IBERSENSOR, 2006.
19. B. Krause Infineon Technology, Applic. Note 50, 17–33, 2001.

Cyclic voltammetry.jpg
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Fri Apr 06, 2018 8:55 am

5.Fu H., Chow H., Lew M., Menon S., Scratchley C., Parameswaran A. An ElectrochemicalPotentiostatInterface for Mobile Devices:Enabling Remote Medical Diagnostics // Issues in Technology Innovation, vol. 13, pp. 1-15.

Abstract: An electrochemical potentiostat interface for mobile devices has been designed and implemented. The interface consists of a potentiostat module, a microcontroller module, and a Bluetooth module. The potentiostat module performs electrochemical measurements and detects the responses from the samples. The microcontroller module controls the test and communication processes. The Bluetooth module links the system to a mobile device, where the mobile device acts as a control-console, data storage system, communication unit, and graphical plotter for the overall diagnostic processes. This interface is suitable for point-of-care and remote diagnostics, enhancing the capabilities of mobile devices in telemedicine.

Main Figures:
Image Image
Image

References
[1] D. West, "How Mobile Devices are Transforming Healthcare," Issues in Technology Innovation, vol. 18, pp. 1-14, May 2012.

[2] D. West, "Improving Health Care through Mobile Medical Devices and Sensors," Center for Technology Innovation at Brookings, pp. 1-13, Oct. 2013.

[3] A.K. Yetisen, J.L. Martinez-Hurtado, A. Garcia-Melendrez, F. da Cruz Vasconcellor, C.R. Lowe, "A smartphone algorithm with inter-phone repearablility for the analysis of colorimetric tests," Sensors and Actuators B: Chemical, vol. 196, pp. 156-160, Jun. 2014.

[4] M. Webster and V. Kumar, "Automated Doctors: Cell Phones as Diagnostic Tools," Clinical Chemistry, vol. 58, no. 11, pp. 1607-1609, Nov. 2012.

[5] S. Mousa, "Biosensors: the new wave in cancer diagnosis," Nanotechnology, Science and Applications, pp. 1-10, Dec. 2010.

[6] M. Pedrero, S. Campuzano, and J. M. Pingarrón, "Electrochemical Biosensors for the Determination of Cardiovascular Markers: a Review," Electroanalysis, vol. 26, no. 6, pp. 1132-1153, Jun. 2014.

[7] S. Menon, N. Vishnu, S.S.S. Panchapakesan, A.S. Kumar, K. Sankaran and M.A. Parameswaran, "Electrochemical detection of hydrolyzed fluorescein diacetate for cell viability tests," Canadian Medical and Biological Engineering Conference, May 2014.

[8] "Potentiostat Electrodes". U.S. Patent 4655880A, 7 Apr. 1987.

[9] A.J. Bard, G. Inzelt and F. Scholz (Eds.), Electrochemical Dictionary, 2nd ed., Springer, 2012, pp. 282-292.

[10] A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: John Wiley & Sons, Inc., 2001.

[11] "RFCOMM Protocol," Bluetooth SIG, [Online]. Available: https://www.bluetooth.org/docman/handle ... _id=263754. [Accessed 7 Apr. 2015].

[12] "Smartphone OS Market Share, Q4 2014," IDC, [Online]. Available: http://www.idc.com/prodserv/smartphone- ... -share.jsp. [Accessed 7 Apr. 2015].

[13] "AChartEngine Download," achartengine.org, [Online]. Available: http://achartengine.org/content/download.html. [Accessed 7 Apr. 2015].

[14] "Android Developers - Bluetooth," [Online]. Available: http://developer.android.com/guide/topi ... tooth.html. [Accessed 8 Mar. 2015].

[15] "Electrochemical detection of hydrolyzed fluorescein dyes as a qualitative and quantitative estimation of cell viability tests". U.S. Provisional Patent 61868294, 21 Aug. 2013.

[16] "Electrochemical detection of bacterial growth in a culture". U.S. Provisional Patent 62006784, 2 Jun. 2014.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Apr 10, 2018 3:58 pm

6. Dobbelaere T.,Vereecken P.M., Detavernier C. A USB-controlled potentiostat/galvanostat for thin-film battery characterization // HardwareX. – 2017. Vol.2. P. 34-49.

Abstract: This article describes the design of a low-cost USB-controlled potentiostat/galvanostat which can measure or apply potentials in the range of ±8 V, and measure or apply currents ranging from nanoamps to max. ±25 mA. Precision is excellent thanks to the on-board 20-bit D/A-convertor and 22-bit A/D-convertors. The dual control modes and its wide potential range make it especially suitable for battery characterization. As an example use case, measurements are presented on a lithium-ion test cell using thin-film anatase TiO2 as the working electrode. A cross-platform Python program may be used to run electrochemical experiments within an easy-to-use graphical user interface. Designed with an open hardware philosophy and using open-source tools, all the details of the project (including the schematic, PCB design, microcontroller firmware, and host computer software) are freely available, making custom modifications of the design straightforward.

Main Figures:
Image Image

Image

References
[1] E.S. Friedman, M.A. Rosenbaum, A.W. Lee, D.A. Lipson, B.R. Land, L.T. Angenent, A cost-effective and field-ready potentiostat that poises subsurface
electrodes to monitor bacterial respiration, Biosens. Bioelectron. 32 (1) (2012) 309–313, http://dx.doi.org/10.1016/j.bios.2011.12.013.
[2] A.A. Rowe, A.J. Bonham, R.J. White, M.P. Zimmer, R.J. Yadgar, T.M. Hobza, J.W. Honea, I. Ben-Yaacov, K.W. Plaxco, CheapStat: an open-source do-ityourself
potentiostat for analytical and educational applications, PLoS One 6 (9) (2011) e23783, http://dx.doi.org/10.1371/journal.pone.0023783.
[3] M.D.M. Dryden, A.R. Wheeler, DStat: a versatile open-source potentiostat for electroanalysis and integration, PLoS One 10 (10) (2015) e0140349, http://
dx.doi.org/10.1371/journal.pone.0140349.
[4] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, second ed., John Wiley & Sons Inc, New York, 2001.
[5] Admiral Instruments, Squidstat Solo. https://www.admiralinstruments.com/prod ... dstat-solo (accessed 28.07.17).
[6] Texas Instruments, OPAx192 datasheet. http://www.ti.com/lit/gpn/opa192 (accessed 30.05.17).
[7] Microchip Technology Inc., MCP3550/1/3 datasheet. http://ww1.microchip.com/downloads/en/D ... 01950F.pdf (accessed 30.05.17).
[8] Texas Instruments, DAC1220 datasheet. http://www.ti.com/lit/gpn/dac1220 (accessed 30.05.17).
[9] Analog Devices, ADR421 datasheet. http://www.analog.com/media/en/technica ... 23_425.pdf (accessed
30.05.17).
[10] Microchip Technology Inc., PIC16F1454/5/9 datasheet. http://ww1.microchip.com/downloads/en/D ... 01639B.pdf (accessed 30.05.17).
[11] KiCad EDA. http://kicad-pcb.org/ (accessed 30.05.17).
[12] Alan Ott, M-stack. http://www.signal11.us/oss/m-stack/ (accessed 30.05.17).
[13] libusb. http://libusb.info/ (accessed 30.05.17).
[14] NumPy. http://www.numpy.org/ (accessed 28.07.17).
[15] SciPy. https://www.scipy.org/ (accessed 28.07.17).
[16] PyUSB. https://github.com/walac/pyusb (accessed 30.05.17).
[17] Riverbank Computing, PyQt. https://www.riverbankcomputing.com/software/pyqt/ (accessed 30.05.17).
[18] PyQtGraph. http://pyqtgraph.org/ (accessed 30.05.17).
[19] Continuum Analytics, Anaconda. https://www.continuum.io/downloads (accessed 28.07.17).
[20] J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles, J. Phys. Chem. C
111 (40) (2007) 14925–14931, http://dx.doi.org/10.1021/jp074464w.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Apr 23, 2018 12:05 pm

7. Meloni G.N. Building a Microcontroller Based Potentiostat: A Inexpensive and Versatile Platform for Teaching Electrochemistry and Instrumentation // J. Chem. Educ. – 2016. V.93. P. 1320−1322.

Abstract: A versatile potentiostat based on inexpensive and “off the shelf” components is reported. The platform was shown to be capable of performing simple electrochemistry experiments, suitable for undergraduate level teaching. The simple design and construction enable easy customization to accommodate a broad array of experimental designs. The equipment was used to calculate the diffusion coefficient of potassium ferricyanide in an aqueous solution, and the obtained result was in good agreement with the literature. Although simple in design, the low cost and good performance of the device make it a competitive alternative for teaching laboratories in the fields of both electronics and electrochemistry, and for developing teaching centers that cannot afford a commercial device.

Main Figures:
Image

References
(1) Resnick, M.; Berg, R.; Eisenberg, M. J. Beyond Black Boxes:
Bringing Transparency and Aesthetics Back to Scientific Investigation.
Learn. Sci. 2000, 9 (1), 7−30.

(2) Kubínová, Š.; Šlégr, J. ChemDuino: Adapting Arduino for Low-
Cost Chemical Measurements in Lecture and Laboratory. J. Chem.
Educ. 2015, 92 (10), 1751−1753.

(3) McClain, R. Construction of a Photometer as an Instructional
Tool for Electronics and Instrumentation. J. Chem. Educ. 2014, 91,
747−750.

(4) Mabbott, G. A. Teaching Electronics and Laboratory Automation
Using Microcontroller Boards. J. Chem. Educ. 2014, 91 (9), 1458−
1463.

(5) Urban, P. L. Open-source electronics as a technological aid in
chemical education. J. Chem. Educ. 2014, 91 (5), 751−752.

(6) Mott, J. R.; Munson, P. J.; Kreuter, R. a.; Chohan, B. S.; Sykes, D.
G. Design, development, and characterization of an inexpensive
portable cyclic voltammeter. J. Chem. Educ. 2014, 91 (7), 1028−1036.

(7) Rowe, A. a.; Bonham, A. J.; White, R. J.; Zimmer, M. P.; Yadgar,
R. J.; Hobza, T. M.; Honea, J. W.; Ben-Yaacov, I.; Plaxco, K. W.
Cheapstat: An open-source, ″do-it-yourself″ potentiostat for analytical
and educational applications. PLoS One 2011, 6 (9), e23783.

(8) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals
and Applications, 2nd ed.; John Wiley and Sons, Inc.: New York, 2001;
pp 24−25.

(9) Kissinger, P. T.; Heineman, W. R. Cyclic voltammetry. J. Chem.
Educ. 1983, 60 (9), 702.

(10) Stackelberg, M. V. Z. Elektrochem. 1953, 57 (5), 338−342.
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Apr 23, 2018 12:32 pm

8. Dryden M.D., Wheeler A.R. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration // Plos one. – 2015. V.10. P.1-17.

Abstract: Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as “black boxes,” giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat’s voltammetric measurements are much more sensitive than those of “CheapStat” (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial “black box” potentiostat. Likewise, in head-to-head tests, DStat’s potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the “open source” movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools.

Main Figures:
Image Image

References
1. Bewick A, Fleischmann M. The design and performance of potentiostats. Biochem Biophys Res Commun.
1963 Mar; 8(3):89–106.

2. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. Fundamentals
and Applications. Wiley; 2000.

3. Bembnowicz P, Yang GZ, Anastasova S, Spehar-Deleze AM, Vadgama P. Wearable electronic sensor
for potentiometric and amperometric measurements. In: 2013 IEEE International Conference on Body
Sensor Networks (BSN). IEEE; 2013. p. 1–5.

4. Kwakye S, Baeumner A. An embedded system for portable electrochemical detection. Sens Actuators,
B. 2007 Apr; 123(1):336–343. doi: 10.1016/j.snb.2006.08.032

5. Huang CY, Syu MJ, Chang YS, Chang CH, Chou TC, Liu BD. A portable potentiostat for the bilirubinspecific
sensor prepared from molecular imprinting. Biosens Bioelectron. 2007 Mar; 22(8):1694–1699.
doi: 10.1016/j.bios.2006.07.036 PMID: 16962762

6. Beach RD, Conlan RW, Godwin MC, Moussy F. Towards a Miniature Implantable In Vivo Telemetry
Monitoring System Dynamically Configurable as a Potentiostat or Galvanostat for Two- and Three-
Electrode Biosensors. IEEE Trans Instrum Meas. 2005 Feb; 54(1):61–72. doi: 10.1109/TIM.2004.
839757

7. Gore A, Chakrabartty S, Pal S, Alocilja EC. A Multichannel Femtoampere-Sensitivity Potentiostat Array
for Biosensing Applications. IEEE Trans Circuits Syst I. 2006 Nov; 53(11):2357–2363. doi: 10.1109/
TCSI.2006.884432

8. Rowe AA, Bonham AJ, White RJ, Zimmer MP, Yadgar RJ, Hobza TM, et al. CheapStat: An Open-
Source, “Do-It-Yourself” Potentiostat for Analytical and Educational Applications. PLoS ONE. 2011
Sep; 6(9):e23783. doi: 10.1371/journal.pone.0023783 PMID: 21931613

9. Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT. A cost-effective and fieldready
potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron.
2012 Feb; 32(1):309–313. doi: 10.1016/j.bios.2011.12.013 PMID: 22209069

10. Gopinath AV, Russell D. An inexpensive field-portable programmable potentiostat. Chem Educ. 2005;.

11. Cruz AFD, Norena N, Kaushik A, Bhansali S. A low-cost miniaturized potentiostat for point-of-care diagnosis.
Biosens Bioelectron. 2014 Dec; 62:249–254. doi: 10.1016/j.bios.2014.06.053 PMID: 25016332

12. Steinberg MD, Lowe CR. A micropower amperometric potentiostat. Sens Actuators, B. 2004 Feb; 97
(2–3):284–289. doi: 10.1016/j.snb.2003.09.002

13. Stanacevic M, Murari K, Rege A, Cauwenberghs G, Thakor NV. VLSI Potentiostat Array With Oversampling
Gain Modulation for Wide-Range Neurotransmitter Sensing. IEEE Trans Biomed Circuits Syst.
2007 Mar; 1(1):63–72. doi: 10.1109/TBCAS.2007.893176 PMID: 23851522

14. Cumyn VK, Fleischauer MD, Hatchard TD, Dahn JR. Design and testing of a low-cost multichannel
pseudopotentiostat for quantitative combinatorial electrochemical measurements on large electrode
arrays. Electrochem Solid-State Lett. 2003; 6(6):E15–E18. doi: 10.1149/1.1570031

15. Li H, Luo X, Liu C, Jiang L, Cui D, Cai X, et al. Multi-channel electrochemical detection system based
on LabVIEW. In: Proceedings of the 2004 International Conference on Information Acquisition, ICIA
2004; 2004. p. 224–227.

16. Gostowski R. Teaching Analytical Instrument Design with LabVIEW. J Chem Educ. 1996 Dec; 73
(12):1103. doi: 10.1021/ed073p1103

17. Stević Z, Andjelković Z, Antić D. A New PC and LabVIEWPackage Based System for Electrochemical
Investigations. Sensors 2008, Vol 8, Pages 1819–1831. 2008 Mar; 8(3):1819–1831.

18. Pearce JM. Chapter 1—Introduction to Open-Source Hardware for Science. In: Pearce JM, editor.
Open-Source Lab. Boston: Elsevier; 2014. p. 1–11.

19. Urban PL. Universal electronics for miniature and automated chemical assays. Analyst. 2015; 140
(4):963–975. doi: 10.1039/C4AN02013H PMID: 25535820

20. Soleymani L, Fang Z, Sun X, Yang H, Taft BJ, Sargent EH, et al. Nanostructuring of Patterned Microelectrodes
To Enhance the Sensitivity of Electrochemical Nucleic Acids Detection. Angew Chem Int
Ed. 2009 Oct; 48(45):8457–8460. doi: 10.1002/anie.200902439

21. McIlvaine TC. A BUFFER SOLUTION FOR COLORIMETRIC COMPARISON. J Biol Chem. 1921;p.
183–186.

22. Soleymani L, Fang Z, Sargent EH, Kelley SO. Programming the detection limits of biosensors through
controlled nanostructuring. Nature Nanotech. 2009 Sep; 4(12):844–848. doi: 10.1038/nnano.2009.276

23. Soleymani L, Fang Z, Lam B, Bin X, Vasilyeva E, Ross AJ, et al. Hierarchical Nanotextured Microelectrodes
Overcome the Molecular Transport Barrier To Achieve Rapid, Direct Bacterial Detection. ACS
Nano. 2011 Apr; 5(4):3360–3366. doi: 10.1021/nn200586s PMID: 21410241

24. Lam B, Fang Z, Sargent EH, Kelley SO. Polymerase Chain Reaction-Free, Sample-to-Answer Bacterial
Detection in 30 Minutes with Integrated Cell Lysis. Anal Chem. 2012 Jan; 84(1):21–25. doi: 10.1021/
ac202599b PMID: 22142422

25. Montenegro MCBSM, Araújo AN. Flow Potentiometry. In: Advances in Flow Analysis. Wiley-VCH Verlag
GmbH & Co. KGaA; 2008. p. 425–454.

26. Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX. Real-Time Potentiometric Detection of Bacteria in
Complex Samples. Anal Chem. 2010 Nov; 82(22):9254–9260. doi: 10.1021/ac101739b PMID:
20961052

27. Winquist F, Krantz-Rülcker C, Lundström I. Electronic Tongues and Combinations of Artificial Senses.
Sens Update. 2002 Dec; 11(1):279–306. doi: 10.1002/seup.200211107

28. Fobel R, Fobel C, Wheeler AR. DropBot: An open-source digital microfluidic control system with precise
control of electrostatic driving force and instantaneous drop velocity measurement. Appl Phys Lett.
2013; 102(19):193513–193518. doi: 10.1063/1.4807118

29. Shamsi MH, Choi K, Ng AHC, Wheeler AR. A digital microfluidic electrochemical immunoassay. Lab
Chip. 2014; 14(3):547–554. doi: 10.1039/C3LC51063H PMID: 24292705

30. Yu Y, Chen J, Li J, Yang S, Fan SK, Zhou J. Microfabrication of a digital microfluidic platform integrated
with an on-chip electrochemical cell. J Micromech Microeng. 2013 Aug; 23(9):095025. doi: 10.1088/
0960-1317/23/9/095025

31. Dryden MDM, Rackus DDG, Shamsi MH, Wheeler AR. Integrated Digital Microfluidic Platform for Voltammetric
Analysis. Anal Chem. 2013; 85(18):8809–8816. doi: 10.1021/ac402003v PMID: 24001207

32. Karuwan C, Sukthang K, Wisitsoraat A, Phokharatkul D, Patthanasettakul V, Wechsatol W, et al. Electrochemical
detection on electrowetting-on-dielectric digital microfluidic chip. Talanta. 2011 Jun; 84
(5):1384–1389. doi: 10.1016/j.talanta.2011.03.073 PMID: 21641456

33. Rackus DG, Dryden MDM, Lamanna J, Zaragoza A, Lam B, Kelley SO, et al. A digital microfluidic
device with integrated nanostructured microelectrodes for electrochemical immunoassays. Lab Chip.
2015; 15(18):3776–3784. doi: 10.1039/C5LC00660K PMID: 26247922

34. Zhao SS, Bukar N, Toulouse JL, Pelechacz D, Robitaille R, Pelletier JN, et al. Miniature multi-channel
SPR instrument for methotrexate monitoring in clinical samples. Biosens Bioelectron. 2015 Feb;
64:664–670. doi: 10.1016/j.bios.2014.09.082 PMID: 25441416
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Apr 24, 2018 1:28 pm

9. Muid A., Djamal M., Wirawan R. Development of a Low Cost Potentiostat Using ATXMEGA32 // AIP Conf. Proc. – 2014. Vol. 1589. P. 124-128.

Abstract: Potentiostat is principal devices in modern electrochemical research especially in the investigation of mechanism reaction which associated with the redox chemistry reaction and other chemical phenomena. Several applications measurement is developed based on this tool such as measurement of sample concentrations, quality test of food and medicine, environmental monitoring and biosensors or development of a protein sensor. We have developed a low cost, simple and portable potentiostat with a relatively small dimension. TLC2264 op-amp and ATMEGA32 microcontroller is used to build controller circuit system. Range potential measurement of this tool is between -1600mV and +1600mV within frequency range 1Hz - 1 kHz. The developed instrument has been tested for measuring samples using different voltammetry techniques, like cyclic, square wave, and linear sweep with relative error under 2.5%.

Main Figures:
Image Image

References
1. Butarbutar, S., dan Febrianto, Pengujian Mesin EDAQ Untuk Mengukur Laju Korosi, Sigma Epsilon 13, 2009,
pp. 54-58.

2. C. N. Yarnitzky, “Design and construction of a potentiostat for a chemical metal-walled reactor“,
Journal of Electroanalytical Chemistry 491, 2000, pp. 154–159.

3. Lisdat, F., and Schafer, D., The use of electrochemical impedance spectroscopy for biosensing, Anal Bional
Chem 391, 2008, pp. 1555-1567.

4. Wei-Song Wang, Wei-Ting Kuo, Hong-Yi Huang and Ching-Hsing Luo, “Wide Dynamic Range CMOS
Potentiostat for Amperometric Chemical Sensor “, Sensors, Vol.10, ISSN 1424-8220,
doi:10.3390/s100301782, 2010, pp. 1782-1797.

5. A. Gore, S. Chakrabartty, S. Pal, and E. C. Alocilja, “A Multichannel Femtoampere-Sensitivity Potentiostat
Array for Biosensing Applications”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 11, NOVEMBER 2006, 2006, pp. 2357-2363.

6. M. H. Nazari, R. Genov, “A Fully Differential CMOS Potentiostat”, IEEE ISCAS 2009 Vol. 1-5, doi:
10.1109/ISCAS.2009.5118228 , 2009, pp. 2177-2180.

7. J. K. Kasi, A. K. Kasi, N. Afzulpurkar, N. Sheikh, “Protein Sensor for the Waste Dialysate Material”, 2010
2nd International Conference on Mechanical and Electronics Engineering, 978-1-4244-7481-3 2010 IEEE Vol. 2, pp.307-312.

8. A.V. Gopinath, D. Russell, “An Inexpensive Field-Portable Programmable Potentiostat”, The Chemical
Educator 11, 2005, pp. 23-28.

9. Gamry Instruments, Potentiostat Fundamentals, Application Note, http://www.gamry.com (accessed
February 2012).

10. Khandpur, R.S., Handbook of Analytical Instruments, Tata McGraw-Hill Publishing Company Limited, New
Delhi, 1989, pp. 480-484.

11. Agilent Impedance Measurement Handbook (cp.literature.agilent.com/litweb/pdf/5950-3000.pdf).

12. FT232R USB UART IC Datasheet Version 2.10, http://www.ftdichip.com/Support/Documents/DataShe
ets/ICs/DS_FT232R.pdf (accessed February 2013).
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Apr 24, 2018 1:54 pm

10. Kaur K. P., Lee S., Kim B. An Integrated Potentiostat // IDEC Journal of Integrated Circuits and Systems. – 2017. Vol. 3. No.3.

Abstract: This paper proposes an integrated potentiostat circuit to realize a compact, power-efficient, and cost-efficient biosensor driving circuit. The proposed potentiostat consists of two integrated operational amplifiers, each of which can be configured with negative feedback to perform potentiostat functionality. When configured as a potentiostat, the control operational amplifier controls the voltage of the counter electrode of the sensor to make the voltage difference between the reference and the working electrodes of the sensor to be identical to the input voltage fed by an external digital-to-analog converter. The other operational amplifier is configured as a transimpedance amplifier which converts the sensing current to the voltage, which is digitally converted by an external analog-to-digital converter. In the experiment, the proposed potentiostat is assembled with digital-to-analog converters, analog-to-digital converters, control-logics, and a laptop computer to form a portable and low-cost bio-sensor platform. With this platform enabled by our chip, users can easily and cost-efficiently generate the necessary control signals such as cyclic waves for bio-sensors.

Main Figures:
Image Image

References
[1] Ikho Lee, Seung-Woo Lee, Ki-Young Lee, Chanoh Park, Donghoon Kim, Jeong-Soo Lee, Hyunjung Yi, and Byungsub Kim, “A Reconfigurable and Portable Highly Sensitive Biosensor Platform for ISFET and Enzyme-based Sensors,” IEEE Sensors Journal, vol. 16, no. 11, pp. 4443-4451, June 2016.

[2] Ikho Lee, Seung-Woo Lee, Ki-Young Lee, Hyungjung Yi, and Byungsub Kim, “An FPGA-Based Embedded System for Portable and Cost-Efficient Bio-sensing: A Low-Cost Controller for Biomedical Diagnosis,” IEEE International Circuits and Systems Symposium, Langkawi, Malaysia, Sept. 2nd, 2015.

[3] Ikho Lee, Chanoh Park, Donghoon Kim, Jeong-Soo Lee, and Byungsub Kim, “A Threshold Voltage Variation Calibration Algorithm for An ISFET-Based Low-Cost pH Sensor System,” IEEE Sensors, Nov. 2015

[4] Arvind et al, “High-level Synthesis: And Essential Ingredient for Designing Complex ASICS,” ICCAD, pp. 775-782, Nov. 2004.

Следующая страница >>
Admin
Site Admin
 
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

Next

Return to Литература по теме

cron

User Menu

Login