It is currently Wed Oct 16, 2019 7:18 am

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

pH - метрия

Подборка научных статей

by Admin » Mon Oct 22, 2018 1:24 pm

21. Jong S. A. , Hofman P. A. G., Sandee A. J. J. Construction and calibration of a rapidly responding pH mini-electrode: application to intertidal sediments // Mar. Ecol. Prog. Ser. – 1988. Vol. 45. P.187-192.

Abstract: The construchon and calibration is descnbed of a new type of pH glass electrode ~mt ha measuring bulb of 1.0 mm in diameter The lower one-fourth zone of the bulb a 15 to 70 pm thlck membrane of pH glass, contributed at least 70 '/o to the final readmg, hence allowng a spatlal resolutlon down to 100 pm The 90 "/o response tlme depended on temperature and vaned from 20 s at 0°C to 5 S at 36°C in buffer solutions and from 5 to 15 S in sedlment at 18°C A maxlmal devlabon of 4 % resulted from the use of standard buffers for calibration instead of saline buffers Over the temperature and pH range tested (0 to 36°C and pH 7 to 10) the mini-electrode showed a hnear response Responses vaned from 91 to 98 "O of those calculated from the Nernstian equation In meltlng ice 75 '10 of the Nernshan response was still found The sturdy bulb of the minl-electrode allows ~ t uss e in muddy as well as sandy sedlments The short response tlme and high spatial resolutlon permit the measurement of vert~calp Hgrad~ ents at microscale parallel to such gradients In oxygen, measured with oxygen microelectrodes An example IS given of a combined measurement of the photosynthet~c activlty of benthic microalgae, pH, and oxygen in an estuarine sedlment.

Main Figures:
Image

References
Butler, R. A., Covington, A. K., Whitfield, M. (1985). The
determination of pH in estuarine waters. 11. Practical considerations.
Oceanologica Acta 8. 433439

Carter, N. W., Pucacco, L. R. (1978). Measurements of pH by
glass microelectrodes. In: Martinez-Maldonaldo, M. (ed.)
Methods in pharmacology. Plenum, New York, p. 195-220

Fisher, J. B., Matisoff, G. (198 1). High resolution vertical
profiles of pH in recent sediments. Hydrobiologia 79:
277-284
Jergensen, B. B., Revsbech, N. P., Cohen, Y (1983). Photosynthesis
and structure of benthic microbial mats: rnicroelectrode
and SEM studies of four cyanobacterial communities.
Lirnnol. Oceanogr. 28: 1075-1093

Lakshminarayanaiah, N. (1976). Membrane electrodes.
Academic Press, New York

Meyers, M. B., Fosslng, H., Powell, E. N. (1987). Microdistribution
of interstitial meiofauna, oxygen and sulfide gradients,
and the tubes of macro-infauna. Mar. Ecol. Prog.
Ser. 35: 223-241

Millero, F. J. (1986). The pH of estuarine waters. Limnol.
Oceanogr. 31: 839-847

Rasmussen, M. B., Henriksen, K.. Jensen, A. (1983). Possible
causes of temporal fluctuations in primary productions of
the microphytobenthos in the Danish Wadden Sea. Mar
Biol 73. 109-114

Revsbech, N. P. (1983). In sltu measurement of oxygen profiles
by use of oxygen mlcroelectrodes. In. Gnaigner, E., Forstner,
H. (eds.) Handbook on polarographic oxygen sensors:
aquatic and physiological applications. Springer,
Heidelberg, p. 265-233

Revsbech, N. P,, Jsrgensen. B. B. (1983). Photosynthesis of
benthic microflora measured with high spatial resolution
by the oxygen microprofile method: capabdities and limltations
of the method. Limnol. Oceanogr. 28: 749-756

Revsbech, N. P., Jsrgensen, B. B., Blackburn, T H., Cohen, Y
(1983). Microelectrode studies of the photosynthesis and
02, H2S and pH profiles of a microbial mat. Limnol.
Oceanogr. 28: 1062-1074

Revsbech, N. P,, Ward, D. M. (1984). Microprofiles of dissolved
substances and photosynthesis in microbial mats measured
with microelectrodes. In: Liss, A. R. (ed.) Microbial
mats. stromatolites. A. L. Liss Inc., New York, p. 171-188
Schwabe, K. (1974). pH measurements and their applications.
Adv. Anal. Chem. Instrum. 10: 495-586

Thornas, R. C. (1978). Ion-sensitive intracellular microelectrodes:
how to make them and use them. Academic Press,
New York Whitfield, M,,B utler, R. A., Covington, A K. (1985). The
determination of pH in estuarine waters. I Defi.nition of pH
scales and the determination of buffers. Oceanologica Acta
8: 423432
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Oct 23, 2018 4:03 pm

22. Achintya N., Zhang C.Fabrication of Anodically Electrodeposited Iridium Oxide Film pH Microelectrodes for Microenvironmental Studies // Anal. Chem. - 2002. V.74. P.5726-5733.

Abstract: A new method for fabrication of anodically electrodeposited iridium oxide film pH microelectrodes has been developed in this study. Novel for its tip size (3-10-ím tip diameter), the microelectrode is fabricated in a tapered glass micropipet filled with a low melting point alloy. The tapered end is recessed and platinized. Thereafter, iridium oxide is electrodeposited over the platinized end in the recessed part. The microelectrode has a very short response time (t80 < 5 s) in the pH range of 0-12 with an accuracy of 0.05 pH unit. The pH microelectrode is not affected by most ions and complexing agents of relevance in environmental and biological studies; it can be used in fluids over wide ranges of stirring speeds (0-55 rpm) and temperatures (5-40 °C). Redox agents such as dissolved oxygen and hydrogen peroxide have no effect on the pH response while quinhydrone, ferro- and ferricyanide, and sodium sulfide have marked effects. However, the microelectrode can still be used in any sample when calibration is done in standards having similar redox characteristics.

Main Figures:
Image


References
(1) Revsbech, N. P.; Jørgensen, B. B.; Blackburn, T. H. Limnol. Oceanogr. 1983,
28, 1062-1074.
(2) Conkling, B. L.; Blanchar, R. W. Soil Sci. Soc. Am. J. 1989, 53, 58-62.
(3) Kim, J. Y.; Lee, Y. H. Biotech. Bioeng. 1989, 34, 131-136.
(4) VanHoudt, P.; Lewandowski, Z. Biotech. Bioeng. 1992, 40, 601-608.
(5) Cai, W.; Reimers, C. E. Limnol. Oceanogr. 1993, 38, 1762-1773.
(6) Yang, J.; Blanchar, R. W.; Hammer, R. D. Soil Sci. Soc. Am. J. 1994, 57,
354-357.
(7) Zhang, T. C. Influence of biofilm structure on transport and transformation
processes in biofilms. Ph.D. Dissertation, University of Cincinnati, OH, 1994.
(8) Runnels, P. L.; Joseph, J. D.; Logman, M.; Wightman, R. M. Anal. Chem.
1999, 71, 2782-2789.
(9) Zhang, T. C.; Pang, H. Environ. Sci. Technol. 1999, 33, 1293-1299.
(10) Yu, T.; Bishop, P. L. Water Environ. Res. 2001, 73, 368-373.
(11) Wipf, D. O.; Ge, F.; Spaine, T. W.; Baur, J. E. Anal. Chem. 2000, 72, 4921-
4927.
(12) Armstrong, W. M.; Garcia-Diaz, Proc. Am. Soc. Exp. Biol. 1980, 39, 2851-
2859.
(13) Fog, A.; Buck, R. P. Sens. Actuators 1984, 5, 137-146.
(14) Kinoshita, E.; Ingman, F.; Edwall, G.; Thulin, S. Talanta 1986, 33, 125-
134.
(15) Fluka. Manual on Selectophore ionophores for ion-selective electrodes; Fluka
Chemical Co.: Ronkonkoma, NY, 1988.
(16) Pang, H. Application of microelectrode techniques for microscale environment
measurements in contaminated soils. M.S. Thesis, University of
NebraskasLincoln, NE, 1997.
(17) Perley, G. A.; Godshalk, J. B. U.S. Patent 2,416,949, 1947.
(18) Wakkad, S. E. S. El; Salem, T. M. J. Phy., Colloidal Chem. 1950, 54, 1371-
1383.
(19) Stock, J. T.; Purdy, W. C.; Garcia, L. M. Chem. Rev. 1951, 58, 611-626.
(20) Wakkad, S. E. S. El; Salem, T. M. J. Phy. Chem. 1952, 56, 621-625.
(21) Glab, S.; Edwall, G.; Jo¨ngren, P.; Ingman, F. Talanta 1981, 28, 301-311.
(22) Burke, L. D.; Mulcahy, J. K.; Whelan, D. P. J. Electroanal. Chem. 1984,
163, 117-128.
(23) Hitchman, M. L.; Ramanathan, S. Analyst 1988, 113, 35-39.
(24) Midgley, D. Talanta 1990, 37, 767-781.
(25) Marzouk, S. A. M.; Ufer, S.; Buck, R. P.; Johnson, T. A.; Dunlap, L. A.; Cascio,
W. E. Anal. Chem. 1998, 70, 5054-5061.
(26) Kirkbright, G. F.; Narayanaswami, R.; Welti, N. A. Analyst 1984, 109, 1025-
1028.
(27) Guthrie, A. J.; Narayanaswami, R.; Russel, D. A. Analyst 1988, 113, 457-
461.
(28) Yamanaka, K. Jpn. J. Appl. Phys. 1989, 28, 632-637.
(29) Schiavone, L. M.; Deutremont-Smith, W. C.; Beni, G.; Shay, J. L. Appl. Phys.
Lett. 1979, 35, 823-825.
(30) Beebe, X.; Rose, T. L. IEEE Trans. Biomed. Eng. 1988, 35, 494-495.
(31) Gottesfeld, S.; Mclntyre, J. D. E.; Beni, G.; Shay, J. L. Appl. Phys. Lett. 1978,
33, 208-210.
(32) Dautremont-Smith, W. C.; Beni, G.; Schiavone, L. M.; Shay, J. L. Appl. Phys.
Lett. 1979, 35, 565-567.
(33) Yoshino, T.; Baba, N.; Arai, K. Jpn. J. Appl. Phys. 1987, 26, 632-637.
(34) Pang, H.; Zhang, T. C. Environ. Sci. Technol. 1998, 32, 3646-3652.
(35) Bezbaruah, A. N.; Zhang, T. C. Water Res. 2002, 36, 4428-4432.
(36) Spiegler, K. S. Saltwater purification; John Wiley & Sons: New York, 1962.
(37) Ammann, D.; Lanter, F.; Steiner, R. A.; Schulthess, P.; Shijo, Y.; Simon, W.
Anal. Chem. 1981, 53, 2267-2269.
(38) Burke, L. D.; Whelan, D. P. J. Electroanal. Chem. 1984, 162, 121-141.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Nov 01, 2018 4:37 pm

23. Quanlong Li, Fengzhen Wang, Zhaohui Aleck Wang, Dongxing Yuan, Minhan Dai, Jinshun Chen, Junwei Dai, and Katherine A. Hoering. Automated Spectrophotometric Analyzer for Rapid Single-Point Titration of Seawater Total Alkalinity // Environ. Sci. Technol. – 2013. Vol. 47. P. 11139−11146.

Abstract: An automated analyzer was developed to achieve fast, precise, and accurate measurements of seawater total alkalinity (AT) based on single-point titration and spectrophotometric pH detection. The single-point titration was carried out in a circulating loop, which allowed the titrant (hydrochloric acid and bromocresol green solution) and a seawater sample to mix at a constant volume ratio. The dissolved CO2 in the ample−titrant mixture was efficiently removed by an inline CO2 remover, which consists of a gas-permeable tubing (Teflon AF2400) submerged in a sodium hydroxide (NaOH) solution. The pH of the mixture was then measured with a custom-made spectrophotometric detection system. The analyzer was calibrated against multiple certified reference materials (CRMs) with different AT values. The analyzer features a sample throughput time of 6.5 min with high precision (±0.33−0.36 μmol kg−1; n = 48) and accuracy (−0.33 ± 0.99 μmol kg−1; n = 10). Intercomparison to a traditional open-cell AT titrator showed overall good agreement of 0.88 ± 2.03 μmol kg−1 (n = 22). The analyzer achieved excellent stability without recalibration over 11 days, during which time 320 measurements were made with a total running time of over 40 h. Because of its small size, low power onsumption requirements, and its ability to be automated, the new analyzer can be adapted for underway and in situ measurements.

Main Figures:
Image


References
(1) Dickson, A. G. An exact definition of total alkalinity and a
procedure for the estimation of alkalinity and total inorganic carbon
from titration data. Deep-Sea Res. 1981, 28A (6), 609−623.
(2) Langdon, C.; Takahashi, T.; Sweeney, C.; Chipman, D.;
Goddard, J.; Marubini, F.; Aceves, H.; Barnett, H.; Atkinson, M. J.
Effect of calcium carbonate saturation state on the calcification rate of
an experimental coral reef. Global Biogeochem. Cycles 2000, 14 (2),
639−654.
(3) Feely, R. A.; Sabine, C. L.; Lee, K.; Millero, F. J.; Lamb, M. F.;
Greeley, D.; Bullister, J. L.; Key, R. M.; Peng, T. H.; Kozyr, A.; Ono,
T.; Wong, C. S. In situ calcium carbonate dissolution in the Pacific
Ocean. Global Biogeochem. Cycles 2002, 16 (4), 91−1−91−12.
(4) Sabine, C. L.; Feely, R. A.; Gruber, N.; Key, R. M.; Lee, K.;
Bullister, J. L.; Wanninkhof, R.; Wong, C. S.; Wallace, D. W. R.;
Tilbrook, B.; Millero, F. J.; Peng, T. H.; Kozyr, A.; Ono, T.; Rios, A. F.
The oceanic sink for anthropogenic CO2. Science 2004, 305, 367−371.
(5) Wang, Z. A.; Cai, W. J.; Wang, Y. C.; Upchurch, B. L. A long
pathlength liquid-core waveguide sensor for real-time pCO2 measurements
at sea. Mar. Chem. 2003, 84, 73−84.
(6) Cai, W. J.; Hu, X. P.; Huang, W. J.; Jiang, L. Q.; Wang, Y. C.;
Peng, T. H.; Zhang, X. Alkalinity distribution in the western North
Atlantic Ocean margins. J. Geophys. Res.: Oceans 2010, 115, C08014.
(7) Millero, F. J. The marine inorganic carbon cycle. Chem. Rev.
2007, 107 (2), 308−341.
(8) Byrne, R. H.; Yao, W. Procedures for measurement of carbonate
ion concentrations in seawater by direct spectrophotometric
observations of Pb(II) complexation. Mar. Chem. 2008, 112, 128−135.
(9) Dickson, A. G.; Afghan, J. D.; Anderson, G. C. Reference
materials for oceanic CO2 analysis: A method for the certification of
total alkalinity. Mar. Chem. 2003, 80, 185−197.
(10) Guide to Best Practices for Ocean CO2 Measurements; Dickson, A.
G., Sabine, C. L., Christian, J. R., Eds.; North Pacific Marine Science
Organization (PICES): Sidney, British Columbia, Canada, 2007;
PICES Special Publication 3.
(11) Millero, F. J.; Zhang, J.; Lee, K.; Campbell, D. M. Titration
alkalinity of seawater. Mar. Chem. 1993, 44, 153−165.
(12) Martz, T. R.; Dickson, A. G.; Degrandpre, M. D. Tracer
monitored titrations: Measurement of total alkalinity. Anal. Chem.
2006, 78, 1817−1826.
(13) Culberson, C. H.; Pytkowicz, R. M.; Hawlly, J. E. Seawater
alkalinity determination by the pH method. J. Mar. Res. 1970, 28, 15−
21.
(14) Breland, J. A.; Byrne, R. H. Spectrophotometric procedures for
determination of sea water alkalinity using bromocresol green. Deep
Sea Res., Part I 1993, 40 (3), 629−641.
(15) Yao, W. S.; Byrne, R. H. Simplified seawater alkalinity analysis:
Use of linear array spectrometers. Deep Sea Res., Part I 1998, 45,
1383−1392.
(16) Roche, M. P.; Millero, F. J. Measurement of total alkalinity of
surface waters using a continuous flowing spectrophotometric
technique. Mar. Chem. 1998, 60, 85−95.
(17) Watanabe, A.; Kayanne, H.; Nozaki, K.; Kato, K.; Negishi, A.;
Kudo, S.; Kimoto, H.; Tsuda, M.; Dickson, A. G. A rapid, precise
potentiometric determination of total alkalinity in seawater by a newly
developed flow-through analyzer designed for coastal regions. Mar.
Chem. 2004, 85 (1−2), 75−87.
(18) Seidel, M. P.; DeGrandpre, M. D.; Dickson, A. G. A sensor for
in situ indicator-based measurements of seawater pH. Mar. Chem.
2008, 109, 18−28.
(19) Martz, T. R.; Carr, J. J.; French, C. R.; DeGrandpre, M. D. A.
Submersible autonomous sensor for spectrophotometric pH measurements
of natural waters. Anal. Chem. 2003, 75, 1844−1850.
(20) Liu, X.; Wang, Z. A.; Byrne, R. H.; Kaltenbacher, E. A.;
Bernstein, R. E. Spectrophotometric measurementsof pH in-situ:
Laboratory and field evaluations of instrumental performance. Environ.
Sci. Technol. 2006, 40, 5036−5044.
(21) DeGrandpre, M. D.; Baehr, M. M.; Hammar, T. R. Calibrationfree
optical chemical sensors. Anal. Chem. 1999, 71, 1152−1159.
(22) Wang, Z. A.; Wang, Y. C.; Cai, W. J.; Liu, S. Y. A long
pathlength spectrophotometric pCO2 sensor using a gas-permeable
liquid-core waveguide. Talanta 2002, 57, 69−80.
(23) Lu, Z.; Dai, M.; Xu, K.; Chen, J.; Liao, Y. A high precision, fast
response, and low power consumption in situ optical fiber chemical
pCO2 sensor. Talanta 2008, 76, 353−359.
(24) Sayles, F. L.; Eck, C. An autonomous instrument for time series
analysis of TCO2 from oceanographic moorings. Deep Sea Res., Part I
2009, 56, 1590−603.
(25) Wang, Z. A.; Liu, X. W.; Byrne, R. H.; Wanninkhof, R.;
Bernstein, R. E.; Kaltenbacher, E. A.; Patten, J. Simultaneous
spectrophotometric flow-through measurements of pH, carbon dioxide
fugacity, and total inorganic carbon in seawater. Anal. Chim. Acta 2007,
596, 23−36.
(26) Byrne, R. H.; Robert-Baldo, G.; Thompson, S. W.; Chen, C. T.
A. Seawater pH measurements: An at-sea comparison of spectrophotometric
and potentiometric methods. Deep-Sea Res. 1988, 35, 1405−
1410.
(27) King, D. W.; Kester, D. R. Determination of seawater pH from
1.5 to 8.5 using colorimetric indicators. Mar. Chem. 1989, 26, 5−20.
(28) Yao, W.; Liu, X.; Byrne, R. H. Impurities in indicators used for
spectrophotometric seawater pH measurements: Assessment and
remedies. Mar. Chem. 2007, 107 (2), 167−172.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Fri Nov 02, 2018 10:02 am

24. Mulugeta Desta. Automation of potentiometric titration with a personal computer using an ibm compatible interface system // Bull. Chem. Soc. Eth iop. – 2001. Vol. 15(2). P. 87-96.

Abstract: An IBM compa tible interface card system with infr a red source-detect or data sampling was designed and tested for automation of potentiometric titrations with personal computers with out continuous measurement of the volume of th e titrant. The device with other appropriate apparatus and setup was tested for determination of iron(II) samples with potassium dichromate. The automation method developed was tested to the titration of 1.500 x 10-4 M iron(II) sample and gives a reliable result of 1.496 x 10-4 M iron(II) with a relative error of 1.76%.

Main Figures:
Image

Image


References
1. Dessy, R.E. Ed. Anal. Chem. 1985, 57, 77.
2. Dessy, R.E. Ed. Anal. Chem. 1985, 57, 310.
3. Kay, A. Sci. Am. 1984, 251, 52.
4. Cerda, V.; Ramis, G. An Introduction to Laboratory Automation, John Wiley: New York;
1990; p 256.
5. Liscouski, J.G. Instrumentation in Analytical Chemistry 1982, 86, 97.
6. Tolpey, M. PC-Based Instrumentation and Control, Clays Ltd.: Great Britain; 1995; 6, 7.
7. Bassett, J.; Denney, R.C.; Jeffery, G.H.; Mendham, J. Text Book of Quantitative Inorganic
Analysis, Longman: New York; 1978.
8. MicroCal Software Inc, Technical Graphics and Data Analysis in Windows, Northampton:
USA; 1995.
9. Eggebrecht, L.C. Interfacing to the IBM Personal Computer, Howard W. Sams & Co. Inc:
Indiana, USA; 1989; pp 142,145.
10. Desta, M. Interfacing Instruments to Personal Computers, Project Paper, International
Atomic Energy Agency’s Seibersdorf Laboratories: Austria; 1990; pp 13, 17, 20.
11. Intel, Programmable Interval Timer data sheet, Intel Corporation: USA; 1985; p 40.
12. Intel, Programmable Peripheral Interface data sheet, Intel Corporation: USA; 1985; p 122.
13. GEC Plessery, Zn 437E an 8-bit and 8 Channel Analog to Digital Converter Data Sheet,
GEC Plessery Semiconductors: USA; 1989; pp 1, 2.
14. Skoog, D.A.; West, D.M. Principles of Instrumental Analysis, Holt, Rinehart and Winston,
Inc.: New York; 1971; p 181.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Nov 06, 2018 11:12 am

25. Potentiometry: The pH Electrode and Potentiometric Titrations / Teaching Experiment EXP011. – 2011.: TEXP011_0705.

Abstract: In this experiment you will investigate the Nernstian response of a pH electrode, perform potentiometric titrations, investigate the acid-base properties of the bicarbonate buffer system,and determine the pKa values of L-histidine.

Main Figures:
Image

Image

Image


References
D.A. Skoog, F.J. Holler and T.A. Nieman, Principle of Instrumental Analysis, 5th ed (1998),
Saunders College Publishing.

D. Midgley and K.Torrance, Potentiometric Water Analysis, 2nd ed (1991), John Wiley & Sons Ltd.

R.C. Weast, CRC Handbook of Chemistry and Physics, 57th ed (1997), CRC Press.
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Wed Nov 07, 2018 9:53 am

26. Cladera A., Caro A., Estela J. M. and Cerd V. A fully automatic system for acid-base coulometric titrations // Journal of Automatic Chemistry. – 1990. Vol. 12. No. 6. pp. 258-262.

Abstract:
An automatic systemfor acid-base titrations by electrogeneration of H+ and OH- ions, with potentiometric end-point detection, was developed. The system includes a PC-compatible computer for instrumental control, data acquisition and processing, which allows up to 13 samples to be analysed sequentially with no human intervention. The system performance was tested on the titration of standard solutions, which it carried out with low errors and RSD. It was subsequently applied to the analysis of various samples of environmental and nutritional interest, specifically waters, soft drinks and wines.

Main Figures:
Image

Image

Image


References
1. ZAGIDULLINA, G. Z. and YUNNIKOVA, M. V., Fermenth. Spirt.
Prom-st., 5 (1987), 8.
2. Su, X., CHEN, H. and YANG, S., Xiamen Daxue Xuevao, Ziran
Kexueban, 26(5), (1987), 605.
3. TAYLOR, P.J. and BROWN, D. M., Comput. Appl. Lab., 1 (3),
(1983), 179.
4. PAP, T., HAjOS, P. and INCZEDY, J., Magyar Kemiai Folyoirat,
87(1), (1981), 36.
5. CLADERA, A., CARO, A., ESTELA, J. M. and CERD,, V.,
International Journal of Environmental Analytical Chemistry (in
press).
6. SAVITZKV, A. and GOLAY, M.J.E., Analytical Chemistry, 36
(1964), 1627.
7. STEINER, J., TERMONA, Y. and DELTOUR, J., Analytical
Chemistry, 44 1972), 1906.
8. GOLTERMAN, H. L., Methods for chemical analysis of fresh
waters. IBP Handbook No. 8 (Blackwells, Oxford, 1970).
9. VOG.L, A., A Text-book of Quantitative Inorganic Analysis,
(Longman, London, 1961).
10. OIV, R6cueil des m6thodes internationales d’analyse des
vins. AI0, 1-3 (1969).


<< Предыдущая страница
Admin
Site Admin
 
Posts: 234
Joined: Wed Sep 20, 2017 9:55 am

Previous

Return to Литература по теме

cron

User Menu

Login