It is currently Wed Oct 17, 2018 3:37 am

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

pH - метрия

Подборка научных статей

by Admin » Wed Jun 06, 2018 12:10 pm

11. Norman F. Sheppard, Jr., Anthony Guiseppi–Elie. pH Measurement / © 1999 by CRC Press LLC.

Abstract: The measurement of pH is arguably the most widely performed test in the chemical laboratory, reflecting the importance of water as a ubiquitous solvent and reactant. In the 90 years since the first use of an electrode to determine hydrogen ion concentration, the glass electrode and its variants have matured into routine tools of analytical and process chemists. Yet, there continue to be developments that promise to broaden the scope and reach of these measurements. Among recent developments are miniature pHsensitive field-effect transistors (pHFETS) being incorporated into pocket-sized pH “pens,” metal/metal oxide pH sensors for measurements at high temperatures and pressures, and flexible fiber-optic pH sensors for measuring pH within the body. This chapter discusses electrochemical and optical methods for pH measurement, and is by necessity limited in scope.

Main Figures:



1. H. Galster, pH Measurement: Fundamentals, Methods, Applications, Instrumentation. New York:
VCH Publishers, 1991.
2. D.A. Skoog, D.M. West, and F.J. Holler, Fundamentals of Analytical Chemistry, 7th ed., Philadelphia,
PA: Saunders College Publishing, 1996.
3. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York:
John Wiley & Sons, 1980.
4. J.W. Ross, Temperature Insensitive Potentiometric Electrode System. U.S. Patent No. 4,495,050, 1982.
5. J. Janata, Principles of Chemical Sensors, New York: Plenum Press, 1989.
6. S.D. Senturia, The role of the MOS structure in integrated sensors, Sensors and Actuators, 4, 507-
526, 1983.
7. M. F. Yuen, I. Lauks, and W.C. Dautremont-Smith, pH dependent voltammetry of iridium oxide
films, Solid State Ionics, 11(1), 19-29, 1983.
8. D. Ammann, Ion-selective Microelectrodes: Principles, Design and Applications New York: Springer
Verlag, 1986.
9. S.N. Cozzette, G. Davis, I.R. Lauks, R.M. Mier, S. Piznik, N. Smit, P. Van Der Werf, and H.J. Wieck,
Process for the Manufacture of Wholly Microfabricated Biosensors, U.S. Patent No. 5,466,575, 1995.
10. M.J.P. Leiner and O. Wolfbeis, Fiber optic pH sensors, in O. Wolfbeis (Ed.) Fiber Optic Chemical
Sensors and Biosensors. Vol. 1, Boca Raton, FL: CRC Press, 1991.
11. J. Janata, Do optical sensors really measure pH?, Anal. Chem., 59, 1351-1356, 1987.
12. J. Janata, M. Josowicz and D.M. DeVaney, Chemical sensors, Anal. Chem., 66, 207R-228R, 1994.
13. J.I. Peterson, S.R. Goldstein, R.V. Fitzgerald, and D.K. Buchwald, Fiber optic pH probe for physiological
use, Anal. Chem., 52, 864-869, 1980.
14. C. Munkholm, D.R. Walt, F.P. Milanovich, and S.M. Klainer, Polymer modification of fiber optic
chemical sensors as a method of enhancing fluorescence signal for pH measurement, Anal. Chem.,
58, 1427-1430, 1986.
15. A. Guiseppi–Elie, G.G. Wallace, and T. Matsue, Chemical and biological sensors based on electrically
conducting polymers, in T. Skotheim, R. Elsenbaumer, and J.R. Reynolds (Eds.) Handbook of
Conductive Polymers, 2nd edition, Chap. 34, p. 963, New York: Marcel Dekker, 1996.
16. N.F. Sheppard Jr., M.J. Lesho, P. McNally, and A.S. Francomacaro, Microfabricated conductimetric
pH sensor. Sens. and Act. B, 28, 95-102, 1995.
17. J.B. Yim, G.E. Khalil, R.J. Pihl, B.D. Huss and G.G. Vurek, Apparatus for Continuously Monitoring
a Plurality of Chemical Analytes through a Single Optical Fiber and Method of Making, U.S. Patent
No. 5,098,659, 1992.
18. J.W. Parce, J.C. Owicki, K.M. Kercso, G.B. Sigal, H.G. Wada, V.C. Muir, L.J. Bousse, K.L. Ross, B.I.
Sikic, and H.M. McConnell, Detection of cell-affecting agents with a silicon biosensor, Science,
246, 243-247, 1989.
19. R. Haugland (Ed.), Handbook of Fluorescent Probes and Research Chemicals, 6th ed., Chap. 23,
Eugene, OR: Molecular Probes, Inc., 1996.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Jun 19, 2018 1:31 pm

12. T.Y. Kim, S. A. Hong, S. Y. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor // Sensors. – 2015. Vol. 15. P. 6469-6482.

Abstract: In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63− as calculated from the cathodic peaks of the SSRE was 6.48 × 10−6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV / pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV / pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV / pH, with the correlation coefficient being greater than 0.99.

Main Figures:




1. Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical sensors for clinic analysis. Sensors 2008, 8, 2043–2081.

2. Kurzweil, P. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook. Sensors 2009, 6, 4955–4985.

3. Noh, J.; Park, S.; Boo, H.; Kim, H.C.; Chung, T.D. Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip. Lab Chip 2011, 11, 664–671.

4. Suzuki, H.; Hiratsuka, A.; Sasaki, S.; Karube, L. Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability. Sens. Actuators B Chem. 1998, 46, 104–113.

5. Polk, B.J.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.; Gaitan, M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sens. Actuators B Chem. 2006, 114, 239–247.

6. Kim, H.R.; Kim, Y.D.; Kim, K.I.; Shim, J.H.; Nam, H.; Kang, B.K. Enhancement of physical and chemical properties of thin film Ag/AgCl reference electrode using a Ni buffer layer. Sens. Actuators B Chem. 2004, 97, 348–354.

7. Ameida, F.L.; Cardoso, J.L.; Igarashi, M.O.; dos Santos Filho, S.G.; Jiménez-Jorquera, C.; Fontes, M.B.A. Fabrication process of Ag/AgCl reference pseudo-electrode based on electrodeposition of Au on Pt surfaces from formaldehyde baths: Chemical Stability and Adherence. ECS Trans. 2009, 23, 255–262.

8. Kwon, N.H.; Lee, K.S.; Won, M.S.; Shim, Y.B. An all-solid-state reference electrode based on the layer-by-layer polymer coating. Analyst 2007, 132, 906–912.

9. Cranny, A.W.J.; Atkinson, J.K. Thick film silver-silver chloride reference electrodes. Meas. Sci. Technol. 1998, 9, 1557–1565.

10. Nolan, M.A.; Tan, S.H.; Kounaves, S.P. Fabrication and characterization of a solid state reference electrode for electroanalysis of natural waters with ultramicroelectrodes. Anal. Chem. 1997, 69, 1244–1247.

11. Matsumoto, T.; Ohashi, A.; Ito, N.; Fujiwara, H.; Matsumoto, T. A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating. Biosens. Bioelectron. 2001, 16, 271–276.

12. Shinwari, M.W.; Zhitomirsky, D.; Deen, I.A.; Selvaganapathy, P.R.; Deen, M.J.; Landheer, D. Microfabricated reference electrodes and their biosensing applications. Sensors 2010, 10, 1679–1715.

13. Suzuki, H.; Shiroishi, H.; Sasaki, S.; Karube, I. Microfabricated liquid junction Ag/AgCl reference electrode and its application to a one-chip potentiometric sensor. Anal. Chem. 1999, 71, 5069–5075.

14. Simonis, A.; Krings, T.; Lüth, H.; Wang, J.; Schöning, M.J. A “hybrid” thin-film pH sensor with integrated thick-film reference. Sensors 2001, 1, 183–192.

15. Elsen, H.A.; Monson, C.F.; Majda, M. Effects of electrodeposition conditions and protocol on the properties of iridium oxide pH sensor electrodes. J. Electrochem. Soc. 2009, 156, F1–F6.

16. Kadara, R.O.; Jenkinson, N.; Banks, C.E. Characterization and fabrication of disposable screen printed microelectrodes. Electrochem. Commun. 2009, 11, 1377–1380.

17. Kinlen, P.J.; Heider, J.E.; Hubbard, D.E. A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators B Chem. 1994, 22, 13–25.

18. Kreider, K.G.; Tarlov, M.J.; Cline, J.P. Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sens. Actuators B Chem. 1995, 28, 167–172.

19. Cogan, S.F.; Ehrlich, J.; Plante, T.D.; Smirnov, A.; Shire, D.B.; Gingerich, M.; Rizzo, J.F. Sputtered iridium oxide films for neural stimulation electrodes. J. Biomed. Mater. Res. B 2008, 89, 353–361.

20. Katsube, T.; Lauks, L.; Zemel, J.N. pH-sensitive sputtered iridium oxide films. Sensors Actuators 1982, 2, 399–410.

21. Yang, H.S.; Kang, S.K.; Choi, C.A.; Kim, H.; Shin, D.H.; Kim, Y.S.; Kim, Y.T. An iridium oxide reference electrode for use in microfabricated biosensors and biochips. Lab Chip 2004, 4, 42–46.

22. Moussy, F.; Harrison, D.J. Prevention of the rapid degradation of subcutaneously implanted Ag/AgCl reference electrodes using polymer coatings. Anal. Chem. 1994, 66, 674–679.

23. Matsumoto, T.; Ohashi, A.; Ito, N. Development of a micro-planar Ag/AgCl quasi-reference electrode with long-term stability for an amperometric glucose sensor. Anal. Chim. Acta 2002, 462, 253–259.

24. Idegami, K.; Chikae1, M.; Nagatani, N.; Tamiya, E.; Takamura, Y. Fabrication and characterization of planar screen-printed Ag/AgCl reference electrode for disposable sensor strip. Jpn. J. Appl. Phys. 2010, 49, doi:10.1143/JJAP.49.097003.

25. Hietala, S.; Maunu, S.L.; Sundholm, F. Sorption and diffusion of methanol and water in PVDF-g-PSSA and Nafion® 117 polymer electrolyte membranes. J. Polym. Sci. 2000, 38, 3277–3284.

26. Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 2012, 335, 442–444.

27. Kim, T.Y.; Yang, S. Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sens. Actuators B Chem. 2014, 196, 31–38.

28. Sun, X.; Wang, M. Fabrication and characterization of planar reference electrode for on-chip electroanalysis. Electrochim. Acta 2006, 52, 427–433.

29. Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

30. Bard, A.J.; Faulkner, L.R. Electrochemical Methods, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001; p. 813.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Jun 19, 2018 2:58 pm

13. Xuelun Hu, Yaoguang Wei, Yingyi Chen, Chunhong Liu. Design of the Smart pH Sensor Based on Ion Selection Electrode // Sensors & Transducers. – 2014. Vol. 26. P. 92-100.

Abstract: In aquaculture pH is one of the important indicators which affect cultivation objects’ healthy growth, whether pH value is normal or not would affect the survival of cultured objects. The traditional pH detecting method has poor stability and reliability, a smart pH sensor which is based on ion selective electrode has been designed in this paper, it adopts positive and negative double power to solve the problem of power supply, the self-excited prevented and impedance matching circuit has been designed to eliminate the selfexcited oscillation circuit's influence on the measurement accuracy. The filter circuit has been designed to prevent the interference of the power frequency noise signal effectively, the zero and range adjustment circuit has been designed to expand the scope of the sensor. The temperature compensation correction model has been proposed to solve the problem of temperature compensation. The experiment results have shown that the developed sensor has good stability, reliability, and suitable for pH monitoring in aquaculture water quality. Copyright © 2014 IFSA Publishing, S. L.

Main Figures:




[1]. Yujuan Xiang, Research on intelligent measuring instrument with multi parameter in wastewater
treatment, Master's Graduation Thesis, Beijing University of Chemical Technology, Beijing, 2007.

[2]. Shihong Xie, Xinrong Wu, Shitao Xie, et al., Effect of fishery water quality analysis and monitoring in
aquaculture, Jiangxi Fisheries Science and Technology, 4, 2005, pp. 6-9.

[3]. Hong Jiang, Study on ammonia measuring instrument, Master's Graduation Thesis, Tianjin University, Tianjin, 2000.

[4]. Qian Liu, Daoliang Li, Kun Ma, et al., Design of intelligent transmitter aquaculture water pH value,
The Chinese Society of Agricultural Engineering, 24, 2, 2008, pp. 5-9.

[5]. Hua Yang, Xiaoming Huang, Design of automatic and continuous monitoring system of water quality,
Software Guide, 5, 2006, pp. 28-29.

[6]. Mingrui Zhu, The research on the automatic monitoring system for online aquaculture parameters
plant, Master's Graduation Thesis, Shanghai Fisheries University, Shanghai, 2007.

[7]. Zhenhua Wang, Jian Gu, et al., Study on several alkaline reagent in the recirculating aquaculture
system pH regulation, Chinese Agricultural Science Bulletin, 26, 01, 2010, pp. 308-311.

[8]. Shengmin Dong, Chengyu Wang, Yukun Pan, et al., Present situation and development of pH glass
electrode, The Glass and Enamel, 32, 02, 2004, pp. 53-58.

[9]. Qisheng Ding, Research of Smart Water Quality Sensors in Aquaculture Based on Electrochemistry
PhD's graduation thesis, China Agricultural University, Beijing, 5, 2012.

[10]. Mingwei Chen, Xingpeng Zhou, Xiuning Liu, Design of on-line monitoring instrument of pH parameters
based on ATmega l6, Journal of Southeast University (Natural Science Edition), 35, Supp. 2, 2005,
pp. 75 78.

[11]. Qiang Du, Bolin Hang, Application of least square method in the calibration of multiple sensor
measurements, Journal of Transducer Technology, 18, 2, 2005, pp. 244-246.

[12]. Haijiang Tai, A Simple Temperature compensation Method for Turbidity Sensor, Computer and
Computing Technologies in Agriculture, 2010, pp. 650-658.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Jun 19, 2018 3:38 pm

14. Vashu Devan. pH Wireless Sensor Network for the meat tenderizing process / A thesis submitted to Auckland University of Technology in fulfilment of the requirements for the degree of Master of Engineering. 2010 School of Engineering.

Abstract: The wireless sensor network is a paradigm shift from the conventional wired system and has made remarkable progress in the last ten years. The system is cost effective, efficient, and user friendly as there is no need for external cables to interconnect devices. There are significant opportunities widely available to assess existing wired systems, and with thorough feasibility studies, most of these could be easily converted into wireless systems. A conceptual pH Wireless Sensor Network based on decentralized architectural paradigm is proposed in this thesis to introduce wireless connectivity and enhance system characteristics of a wired meat tenderising system. The network consists of pH Sensor Nodes and Stimuli Actuator Nodes. The focus of this thesis is the architectural design of these nodes and development of prototypes. Carcass pH is determined non-intrusively using a proprietary pH analysis alogrithm and process. This method enables pH analysis of carcasses in a meat plant without stopping the conveyor. The basis of the design is distributed processing and the collaborative nature of a Wireless Sensor Network. This showed that a network of sensor/actuator nodes could replace the existing wired meat tenderizing system and effectively handle the meat tenderizing process. The wireless sensor network is a paradigm shift from the conventional wired system and has made remarkable progress in the last ten years. The system is cost effective, efficient, and user friendly as there is no need for external cables to interconnect devices. There are significant opportunities widely available to assess existing wired systems, and with thorough feasibility studies, most of these could be easily converted into wireless systems. A conceptual pH Wireless Sensor Network based on decentralized architectural paradigm is proposed in this thesis to introduce wireless connectivity and enhance system characteristics of a wired meat tenderising system. The network consists of pH Sensor Nodes and Stimuli Actuator Nodes. The focus of this thesis is the architectural design of these nodes and development of prototypes. Carcass pH is determined non-intrusively using a proprietary pH analysis alogrithm and process. This method enables pH analysis of carcasses in a meat plant without stopping the conveyor. The basis of the design is distributed processing and the collaborative nature of a Wireless Sensor Network. This showed that a network of sensor/actuator nodes could replace the existing wired meat tenderizing system and effectively handle the meat tenderizing process. The objectives of the project were met following the set up of the ZigBig network to simulate meat tenderizing process control, and design of the sensor node and actuator node architecture. A set of standard tools were also determined as part of the project, and are readily available in the market. The major achievement of the project was the development of sensor node and actuator node prototypes, consistent with the expectations of the sponsors and handed over to Merit of Measurement, Auckland.

Main Figures:


1. Chrystall, B.B., & Devine C.E. (1978). Electrical stimulation, muscle tension
and glycolysis in bovine Sternomandibularis. Meat Science, 2(1), 49-58.

2. Locker, R.H., et al. (1975). New Concepts in Meat Processing. Advances in
Food Research, 21, 157-222.

3. Dransfield, E. (1987). Fundamental of meat chilling, electrical stimulation and conditioning. International Journal of Refrigeration, 10(2), 110-112.

4. Geesink, G.H., et al. (2001). Effects of stress and high voltage electrical stimulation on tenderness of lamb m. longissimus. Meat Science, 57(3), 265-271.

5. Koohmaraie, M., Shackleford, S.D., & Wheeler T.L. (2005). Biological base that determines beef tenderness. British Society of Animal Science, 21-25.

6. Solomon, M.B. (1986). Effect of different types and locations of the electrode source of an extra low voltage electrical stimulation system on beef quality. Meat Science, 16(3), 217-224.

7. Taylor, D.G., & Cornell, J.G. (1986). The effects of electrical stimulation and ageing on beef tenderness. Meat Science, 12(4), 243-251.

8. Bickerstaffe, R., et al. (2001). Impact of introducing specifications on the tenderness of retail meat. Meat Science, 59(3), 303-315.

9. Monin, G. (1998). Recent methods for predicting quality of whole meat. Meat Science, 49(1), 231-243.

10. Simmons, N.J., et al. (2006). Integrated technologies to enhance meat quality - An Australasian perspective. Meat Science, 74(1), 172-179.

11. SMEQ. (n.d). Retrieved August7, 2008, from ... tomer.html.

12. Toohey, E.S., et al. (2008). The impact of new generation pre-dressing mediumvoltage electrical stimulation on tenderness and colour stability in lamb meat. Meat Science, 79, 683-691.

13. Simmon, N., et al. (2006). Integrated Technologies for Enhanced Meat Quality. Presented at ICoMST, Dublin, Ireland.

14. Seideman, S.C., & Cross, H.R. (1982). Utilization of electrical stimulation to improve meat quality: A Review. Journal of Food Quality, 5(4), 247-269.

15. Geesink, G.H., et al. (2001). Electrical stimulation -- when more is less. Meat Science, 57(2), 145-151.

16. Sørheim, O., & Hildrum, K.I. (2002). Muscle stretching techniques for improving meat tenderness. Trends in Food Science & Technology, 13(4), 127-135.

17. SmartStimTM (n.d.). Retrieved August17, 2008, from areas/eating-quality/products/smartstim.

18. Simmons, N.J., et al. (2008). Reassessing the principles of electrical stimulation. Meat Science, 80(1), 110-122.

19. Gislason, D. (2008). ZigBee Wireless Networking. Oxford: Newnes.

20. Li, Z., (2006). ZigBee Wireless Sensor Network in Industrial Applications. SICE-ICASE, 1067-1070.

21. Khakpour, K., & Shenassa, M.H. (2008). Industrial Control using Wireless Sensor Networks [Electronic version]. Information and Communication Technologies: From Theory to Applications, 1-5.

22. Jui-Yu, C., Min-Hsiung, H., & Jen-Wei, C. (2007). A ZigBee-Based Power Monitoring System with Direct Load Control Capabilities. Networking, Sensing and Control, 895-900.

23. Getting Started with MATLAB. Retrieved August 18, 2008, from ... r_2pl.html.

24. OPNET Technologies Inc. Retrieved January 12, 2009, from OPNET\14.5A\doc\modeler\STM\STM-44-01.html.

25. PACKET-SNIFFER: SmartRF Protocol Packet Sniffer. Retrieved February 8, 2009, from ... iffer.html.

26. CC2430DB:CC2430 Demonstration Board. Retrieved February 10, 2009, from ... 430db.html.

27. IAR Embedded Workbench for TI MSP430. Retrieved October 3, 2008, from

28. CCS: Code Composer Studio Integrated Development Environment (IDE). Retrieved
October 10, 2008, from ... tudio.html.

29. SPRC121:TMS320C67x DSP Library. Retrieved October 12, 2008, from ... rc121.html.

30. CodeVisionAVR V2.04.5 User Manual. Retrieved September 5, 2008, from

31. Z-Stack: ZigBee Protocol Stack. Retrieved October 7, 2008, from ... stack.html.

32. Altium Designer 6 An Introduction. (n.d). (2005). Belrose, NSW, Australia: Altium Ltd.

33. TMDSDSK6713:TMS320C6713 DSP Starter Kit (DSK). Retrieved October 23, 2008, from ... k6713.html.

34. Z-Accel Demonstration Kit: EZ-RF2480. Retrieved February 7, 2009, from ... f2480.html.

35. MSP430F2274:16-bit Ultra-Low-Power Microcontroller, 32kB Flash, 1K RAM.
Retrieved February 7, 2009, from ... f2274.html.

36. CC2430: System-on-Chip Solution for 2.4 GHz IEEE 802.15.4 / ZigBee™ Retrieved February 8, 2009, from

37. IEEE 802.15.4. Retrieved December 10, 2008, from ... d-2009.pdf.

38. CC2480 Data Sheet (Rev.A). Retrieved December 4, 2008, from

39. Howitt I., Manges W.W., Kuruganti P.T., Allgood G., Gutierrez, J.A., Conrad J.M. (2006). Wireless industrial sensor networks: Framework for QoS assessment and Qos management, The Instrumentation, Systems and Automation Society, 45 (3), 347-359.

40. TMS320C6713. Retrieved September 17, 2008, from

41. Decentralized Computing.(n.d.). Retrieved August 23, 2008, from ... ter_system.

42. Proakis, J.G., & Manolakis, D.G. (1996). Digital Signal Processing: Principles, Algorithms and Applications. New Jersey: Prentice Hall.

43. C2833x/C2823x C/C++ Header Files and Peripheral Examples. Retrieved
March 14, 2009, from ... rc530.html.

44. ISM band. Retrieved October 7, 2008, from

45. Wireless Technology Comparison. (n.d). Retrieved October 7, 2008, from ... arison.pdf.

46. Baker, N. (2005). Zigbee and Bluetooth: strengths and weaknesses for industrial applications. IEE Journal of Computing and Control Engineering, 20-25.

47. Baker, N. (2005). Bluetooth: Strengths and Weaknesses for Industrial applications. IEE Journal of Computing and Control Engineering, 21-25.

48. ZigBee Specification including the Pro Feature Set. Retrieved November 2, 2008, from http://www/ ... ments.aspx.

49. TMS320F28235/28234/28232: Digital Signal Controllers (DSCs) Data Manual SPRS439E (2008). Retrieved February 13, 2009, from ... entId=1107.

50. SINGLE-CHIP USB TO UART BRIDGE CP2103, Silicon Laboratories, 2005.
Retrieved March 4, 2009, from ... fault.aspx.

51. Single Supply, MicroPower INSTRUMENTATION AMPLIFIER, INA122UA. PDS-1388B, BURR- BROWN Corporation, 1997. Retrieved March 4, 2009, from

52. 5-V, Low Power, 16-Bit, 200-KSPS serial Analog-to-Digital converters with Auto-Power down. SLAS293 − DECEMBER 2001 TLC4545. Retrieved March 4, 2009, from ... c4545.html.

53. Hammoodi, I.S., Stewart B.G., Kocian, A., & McMeekin, S.G. (2009). A comprehensive Performance Study of OPNET Modeler For ZigBee™ Wireless Sensor Networks. NGMAST, 357-362.

54. Tedea Huntleigh load cell datasheet. Retrieved December 18, 2008, from
http:// ... uct-12020/.

55. Calculation and usage of LQI and RSSI. Retrieved January 7, 2009, from ... 18233.aspx.

56. Wireless Sensor Network. Retrieved August 16, 2008, from

57. Farahani, S. (2008). ZigBee Wireless Networks and Transceivers. Oxford: Newnes.

58. Bateman, A., & Patterson-Stephens, I. (2002). The DSP Handbook. London: Prentice Hall.

59. ISM-Band and Short Range Device Regulatory Compliance Overview. Retrieved
February 3, 2009, from

60. Antenna Selection Guide. Retrieved January 5, 2009, from

61. ISM-Band and Short Range Device Antennas (Rev. A). Retrieved January 5,
2009, from ... r=swra046a.

62. AN048: 2.4GHz Chip Antenna (Rev. B). Retrieved January 5, 2009, from ... r=swra092b.

63. AN032: 2.4 GHz Regulations. Retrieved February 3, 2009, from ... er=swra060.

64. AN003 SRD Antennas. Retrieved January 5, 2009, from ... er=swra088.

65. DN018: Range Measurements in an Open Field Environment (Rev. A). Retrieve-
-d January 7, 2009, from ... r=swra169a.

66. ZigBee Cluster Library. Retrieved February 22, 2009, from ... nload.aspx.

67. Durrant-Whyte, H.F., Rao, B.Y.S., Hu, H. (1991). Toward a fully decentralized architecture for multi-sensor data fusion. Principles and Applications of Data Fusion, IEE Colloquium, 2, 1-4.

68. TMS320C67x DSP Library Programmer’s Reference Guide. Retrieved September
15, 2008, from ... r=spru657c.

69. Wellington, S. (2002). Algorithms for sensor validation and multisensory fusion. Nottingham Trent University, Nottingham, United Kingdom.

70. CC2480 Interface Specification. Retrieved December 10, 2008, from

71. Atmel AVR ATtiny88 – 8 Bit RISC MCU. Retrieved October 10, 2008, from ... rt_id=4351.

72. National Instruments PCI-6220 DAQ. Retrieved July 24, 2008, from

73. CC2480 Developer’s Guide. Retrieved November 7, 2008, from ... er=swra176.

74. RSSI on eZ430-RF2480. Retrieved March 10, 2009, from ... ageIndex=2.

75. Ceramic Antenna, 2.4 GHz, Johanson Technology, (P/N: 2450AT18B100). Retrieved
November 7, 2008, from ... 2-2006.pdf.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Jun 25, 2018 9:21 am

15. Sun A., Phelps T., Yao C., Venkatesh A. G., Conrad D. Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis // Sensors. – 2017. Vol.17. 1245; doi:10.3390/s17061245.

Abstract: Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging theubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs.

Main Figures:


1. Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet.
2015, 16, 45–56. [CrossRef] [PubMed]
2. Tuchman, L.K.; Schwartz, L.A.; Sawicki, G.S.; Britto, M.T. Cystic Fibrosis and Transition to Adult Medical
Care. Pediatrics 2010, 125, 566–573. [CrossRef] [PubMed]
3. Stoltz, D.A.; Meyerholz, D.K.; Welsh, M.J. Origins of Cystic Fibrosis Lung Disease. N. Engl. J. Med. 2015, 372,
351–362. [CrossRef] [PubMed]
4. Metters, J.P.; Kampouris, D.K.; Banks, C.E. Electrochemistry provides a point-of-care approach for the marker
indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients. Analyst 2014, 139, 3999–4004.
[CrossRef] [PubMed]
5. Eickmeier, O.; Huebner, M.; Herrmann, E.; Zissler, U.; Rosewich, M.; Baer, P.C.; Buhl, R.; Schmitt-Grohé, S.;
Zielen, S.; Schubert, R. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary
disease (COPD) and association between pulmonary function. Cytokine 2010, 50, 152–157. [CrossRef]
6. Weldon, S.; McNally, P.; McElvaney, N.G.; Elborn, J.S.; McAuley, D.F.; Wartelle, J.; Belaaouaj, A.; Levine, R.L.;
Taggart, C.C. Decreased Levels of Secretory Leucoprotease Inhibitor in the Pseudomonas-Infected Cystic
Fibrosis Lung Are Due to Neutrophil Elastase Degradation. J. Immunol. 2009, 183, 8148–8156. [CrossRef]
7. Mayer-Hamblett, N.; Aitken, M.L.; Accurso, F.J.; Kronmal, R.A.; Konstan, M.W.; Burns, J.L.; Sagel, S.D.;
Ramsey, B.W. Association between Pulmonary Function and Sputum Biomarkers in Cystic Fibrosis. Am. J.
Respir. Crit. Care Med. 2007, 175, 822–828. [CrossRef] [PubMed]
8. Ojoo, J.C.; Mulrennan, S.A.; Kastelik, J.A.; Morice, A.H.; Redington, A.E. Exhaled breath condensate pH and
exhaled nitric oxide in allergic asthma and in cystic fibrosis. Thorax 2005, 60, 22–26. [CrossRef] [PubMed]
9. Carpagnano, G.E.; Barnes, P.J.; Francis, J.;Wilson, N.; Bush, A.; Kharitonov, S.A. Breath condensate pH in
children with cystic fibrosis and asthma*: A new noninvasive marker of airway inflammation? Chest 2004,
125, 2005–2010. [CrossRef] [PubMed]
10. Quittner, A.L.; Sawicki, G.S.; McMullen, A.; Rasouliyan, L.; Pasta, D.J.; Yegin, A.; Konstan, M.W. Erratum to:
Psychometric evaluation of the Cystic Fibrosis Questionnaire-Revised in a national, US sample. Qual. Life Res.
2012, 21, 1279–1290. [CrossRef] [PubMed]
11. Quittner, A.L.; Modi, A.C.; Wainwright, C.; Otto, K.; Kirihara, J.; Montgomery, A.B. DEtermination of
the minimal clinically important difference scores for the cystic fibrosis questionnaire-revised respiratory
symptom scale in two populations of patients with cystic fibrosis and chronic pseudomonas aeruginosa
airway infection. Chest 2009, 135, 1610–1618. [CrossRef] [PubMed]
12. Kupferberg, D.H.; Kaplan, R.M.; Slymen, D.J.; Ries, A.L. Minimal clinically important difference for the
UCSD Shortness of Breath Questionnaire. J. Cardpulm. Rehabil. 2005, 25, 370–377. [CrossRef]
13. Eakin, E.G.; Resnikoff, P.M.; Prewitt, L.M.; Ries, A.L.; Kaplan, R.M. Validation of a new dyspnea measure:
The ucsd shortness of breath questionnaire. Chest 1998, 113, 619–624. [CrossRef] [PubMed]
14. De Matteis, V.; Cannavale, A.; Blasi, L.; Quarta, A.; Gigli, G. Chromogenic device for cystic fibrosis precocious
diagnosis: A “point of care” tool for sweat test. Sens. Actuators B Chem. 2016, 225, 474–480. [CrossRef]
15. Gonzalo-Ruiz, J.; Mas, R.; de Haro, C.; Cabruja, E.; Camero, R.; Alonso-Lomillo, M.A.; Muñoz, F.J. Early
determination of cystic fibrosis by electrochemical chloride quantification in sweat. Biosens. Bioelectron. 2009,
24, 1788–1791. [CrossRef] [PubMed]
16. Bonanni, A.; Esplandiu, M.J.; del Valle, M. Impedimetric genosensing of DNA polymorphism correlated to
cystic fibrosis: A comparison among different protocols and electrode surfaces. Biosens. Bioelectron. 2010, 26,
1245–1251. [CrossRef] [PubMed]
17. Lagae, L.; Wirix-Speetjens, R.; Liu, C.X.; Laureyn, W.; Borghs, G.; Harvey, S.; Galvin, P.; Ferreira, H.A.;
Graham, D.L.; Freitas, P.P.; et al. Magnetic biosensors for genetic screening of cystic fibrosis. IEE Proc. Circuits
Devices Syst. 2005, 152, 393–400. [CrossRef]
18. Benuzzi, M.L. S.; Pereira, S.V.; Raba, J.; Messina, G.A. Screening for cystic fibrosis via a magnetic and
microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold
electrode. Microchim. Acta 2016, 183, 397–405. [CrossRef]
19. Piraino, F.; Volpetti, F.;Watson, C.; Maerkl, S.J. A Digital–Analog Microfluidic Platform for Patient-Centric
Multiplexed Biomarker Diagnostics of Ultralow Volume Samples. ACS Nano 2016, 10, 1699–1710. [CrossRef]
20. Curto, V.F.; Coyle, S.; Byrne, R.; Angelov, N.; Diamond, D.; Benito-Lopez, F. Concept and development of an
autonomous wearable micro-fluidic platform for real time pH sweat analysis. Sens. Actuators B Chem. 2012,
175, 263–270. [CrossRef]
21. Hong, J.I.; Chang, B.-Y. Development of the smartphone-based colorimetry for multi-analyte sensing arrays.
Lab Chip 2014, 14, 1725–1732. [CrossRef] [PubMed]
22. Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip 2012, 12,
4240–4243. [CrossRef] [PubMed]
23. Curto, V.F.; Fay, C.; Coyle, S.; Byrne, R.; O’Toole, C.; Barry, C.; Hughes, S.; Moyna, N.; Diamond, D.;
Benito-Lopez, F. Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic
platform incorporating ionic liquids. Sens. Actuators B Chem. 2012, 171–172, 1327–1334. [CrossRef]
24. Xu, W.; Lu, S.; Chen, Y.; Zhao, T.; Jiang, Y.; Wang, Y.; Chen, X. Simultaneous color sensing of O2 and pH
using a smartphone. Sens. Actuators B Chem. 2015, 220, 326–330. [CrossRef]
25. Oncescu, V.; O’Dell, D.; Erickson, D. Smartphone based health accessory for colorimetric detection of
biomarkers in sweat and saliva. Lab Chip 2013, 13, 3232–3238. [CrossRef] [PubMed]
26. Bandodkar, A.J.; Hung, V.W.S.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J.R.; Martinez, A.G.; Ramírez, J.;
Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH
monitoring. Analyst 2012, 138, 123–128. [CrossRef] [PubMed]
27. Nemiroski, A.; Christodouleas, D.C.; Hennek, J.W.; Kumar, A.A.; Maxwell, E.J.; Fernández-Abedul, M.T.;
Whitesides, G.M. Universal mobile electrochemical detector designed for use in resource-limited applications.
Proc. Natl. Acad. Sci. USA 2014, 111, 11984–11989. [CrossRef] [PubMed]
28. Bratov, A.; Abramova, N.; Ipatov, A. Recent trends in potentiometric sensor arrays—A review.
Anal. Chim. Acta 2010, 678, 149–159. [CrossRef] [PubMed]
29. Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. Review Paper: Materials and Techniques for In Vivo pH
Monitoring. IEEE Sens. J. 2008, 8, 20–28. [CrossRef]
30. Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. Review on State-of-the-art in Polymer Based pH Sensors.
Sensors 2007, 7, 3027–3042. [CrossRef]
31. Yuqing, M.; Jianrong, C.; Keming, F. New technology for the detection of pH. J. Biochem. Biophys. Methods
2005, 63, 1–9. [CrossRef] [PubMed]
32. Wang, M.; Yao, S.; Madou, M. A long-term stable iridium oxide pH electrode. Sens. Actuators B Chem. 2002,
81, 313–315. [CrossRef]
33. Marzouk, S.A.; Ufer, S.; Buck, R.P.; Johnson, T.A.; Dunlap, L.A.; Cascio, W.E. Electrodeposited iridium oxide
pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Anal. Chem. 1998,
70, 5054–5061. [CrossRef] [PubMed]
34. Burke, L.D.; Mulcahy, J.K.; Whelan, D.P. Preparation of an oxidized iridium electrode and the variation of its
potential with pH. J. Electroanal. Chem. Interfacial Electrochem. 1984, 163, 117–128. [CrossRef]
35. Lakard, B.; Herlem, G.; Lakard, S.; Guyetant, R.; Fahys, B. Potentiometric pH sensors based on
electrodeposited polymers. Polymer 2005, 46, 12233–12239. [CrossRef]
36. Kuo, Y.-S.; Schmid, T.; Dutta, P. Hijacking power and bandwidth from the mobile phone’s audio interface.
In Proceedings of the First ACM Annual Symposium on Computing for Development, London, UK,
17–18 December 2010.
37. Laksanasopin, T.; Guo, T.W.; Nayak, S.; Sridhara, A.A.; Xie, S.; Olowookere, O.O.; Cadinu, P.; Meng, F.;
Chee, N.H.; Kim, J.; et al. A smartphone dongle for diagnosis of infectious diseases at the point of care.
Sci. Transl. Med. 2015, 7, 273re1. [CrossRef] [PubMed]
38. Wang, X.; Gartia, M.R.; Jiang, J.; Chang, T.-W.; Qian, J.; Liu, Y.; Liu, X.; Liu, G.L. Audio jack based miniaturized
mobile phone electrochemical sensing platform. Sens. Actuators B Chem. 2015, 209, 677–685. [CrossRef]
39. Zhang, D.; Lu, Y.; Zhang, Q.; Liu, L.; Li, S.; Yao, Y.; Jiang, J.; Liu, G.L.; Liu, Q. Protein detecting
with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications.
Sens. Actuators B Chem. 2016, 222, 994–1002. [CrossRef]
40. Yao, C.; Sun, A.; Hall, D.A. Efficient Power Harvesting from the Mobile Phone Audio Jack for mHealth
Peripherals. In Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC), Seattle,
WA, USA, 8–11 October 2015.
41. Sun, A.; Wambach, T.; Venkatesh, A.G.; Hall, D.A. A low-cost smartphone-based electrochemical biosensor
for point-of-care diagnostics. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference
(BioCAS), Lausanne, Switzerland, 22–24 October 2014; pp. 312–315.
42. Sun, A.C.; Yao, C.; Venkatesh, A.G.; Hall, D.A. An efficient power harvesting mobile phone-based
electrochemical biosensor for point-of-care health monitoring. Sens. Actuators B Chem. 2016, 235, 126–135.
[CrossRef] [PubMed]
43. Yao, S.;Wang, M.; Madou, M. A pH Electrode Based on Melt-Oxidized Iridium Oxide. J. Electrochem. Soc.
2001, 148, H29–H36. [CrossRef]
44. Agnew, W.F.; Yuen, T.G.H.; McCreery, D.B.; Bullara, L.A. Histopathologic evaluation of prolonged
intracortical electrical stimulation. Exp. Neurol. 1986, 92, 162–185. [CrossRef]
45. Mailley, S.C.; Hyland, M.; Mailley, P.; McLaughlin, J.M.; McAdams, E.T. Electrochemical and structural
characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical
signal. Mater. Sci. Eng. C 2002, 21, 167–175. [CrossRef]
46. Dias, N.S.; Carmo, J.P.; da Silva, A.F.; Mendes, P.M.; Correia, J.H. New dry electrodes based on iridium oxide
(IrO) for non-invasive biopotential recordings and stimulation. Sens. Actuators Phys. A 2010, 164, 28–34.
47. Göbbels, K.; Kuenzel, T.; van Ooyen, A.; Baumgartner, W.; Schnakenberg, U.; Bräunig, P. Neuronal cell
growth on iridium oxide. Biomaterials 2010, 31, 1055–1067. [CrossRef] [PubMed]
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Jun 25, 2018 10:00 am

16. Saeid Kakooei, Mokhtar Che Ismail, Bambang Ari Wahjoedi. Electrochemical Study of Iridium Oxide Coating on Stainless Steel Substrate // Int. J. Electrochem. Sci.- 2013. V.8. P. 3290 – 3301.

Abstract: Electrodeposition of Iridium Oxide (IrO2) on stainless steel substrate was performed by cyclic voltammetry to assess its performance as pH electrode sensor. The effect of scan rate and number of cycles on IrO2 thickness and pH sensitivity were investigated by electrochemical experiment. All fabricated pH sensor had a super-Nernstian response value in range of -69.9 to -74.5 mV/pH unit. Electrochemical results indicated iridium oxide decreased electrode impedance which was in direct relation with its thickness.

Main Figures:



1. H. Yang, S. K. Kang, D. H. Shin, H. Kim, and Y. T. Kim. 2003. IEEE.
2. R. K. Franklin, S. Joo, S. Negi, F. Solzbacher, and R. B. Brown. IEEE SENSORS 2009 Conference. 2009. IEEE.
3. R. A. Macur, Milwauki, Wis., US Patent 3,726,777 (1973)
4. D. O’Hare, K. H. Parker, and C. P. Winloves, Medical engineering & physics 28(2006) 982
5. J. C. Chiao and W. D. Huang, US2011/0140703 (2010)
6. P. Huang and K. G. Kreider, 1988, Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering; National Bureau of Standards, Washington, DC (USA). Center for Chemical Engineering.
7. K. Kreiders, Sensors and Actuators B: Chemical 5(1991) 165
8. R. Prasads, NACE Int. Conference, (2000) 00390
9. Z. Lewandowski, T. Funk, F. Roe, B. J. Little, J. Kearns, and B. Littles, ASTM International 1232(1994) 61
10. B. J. Little, Z. Lewandowski, T. Funk, and F. Roe, Spatial Distribution of pH at Mild Steel Surfaces Using an Iridium Oxide Microelectrode, 1994, DTIC Document.
11. Y. J. Kim, Y. C. Lee, B. K. Sohn, J. H. Lee, and C. S. Kims, J. Korean Phys. Soc. 43(2003) 769
12. H. Quan, W. Kim, K. Chung, and J. Parks, Bull. Korean Chem. Soc. 26(2005) 1565.
13. I. Song, K. Fink, and J. Payers, Corrosion, NACE Inter. 54(1998) 98010013.
14. T. Arikawa, Y. Takasu, Y. Murakami, K. Asakura, and Y. Iwasawas, The Journal of Physical Chemistry B 102(1998) 3736
15. K. Yamanakas, Japanese journal of applied physics 28(1989) 632-637.
16. Y. Lu, T. Wang, Z. Cai, Y. Cao, H. Yang, and Y. Y. Duans, Sensors and Actuators B: Chemical 137(2009) 334
17. M. Pikulski and W. Gorskis, Analytical chemistry 72(2000) 2696
18. C. Terashima, T. N. Rao, B. V. Sarada, N. Spataru, and A. Fujishimas, Journal of Electroanalytical Chemistry 544(2003) 65
19. I. A. Ges, B. L. Ivanov, D. K. Schaffer, E. A. Lima, A. A. Werdich, and F. J. Baudenbachers, Biosensors and Bioelectronics 21(2005) 248
20. S. A. M. Marzouks, Analytical chemistry 75(2003) 1258
21. R. D. Meyer, S. F. Cogan, T. H. Nguyen, and R. D. Rauhs, Neural Systems and Rehabilitation Engineering, IEEE Transactions on 9(2001) 2
22. C. C. Mayorga Martinez, R. E. Madrid, and C. J. Felices, Sensors and Actuators B: Chemical 133(2008) 682
23. W. D. Huang, L. C. Hsu, J. Wang, T. Ativanichayaphong, S. Deb, M. Chiao, and J. Chiao. Smart Materials, Nano-and Micro-Smart Systems. 2008. International Society for Optics and Photonics.
24. S. S. Thanawala, R. J. Baird, D. G. Georgiev, and G. W. Auners, Applied Surface Science 254(2008) 5164
25. J. D. Blakemore, N. D. Schley, M. N. Kushner-Lenhoff, A. M. Winter, F. D’Souza, R. H. Crabtree, and G. W. Brudvigs, Inorganic Chemistry 51(2012) 7749
© 2013
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Fri Sep 28, 2018 3:46 pm

17. рH метрия: настоящее и будущее / Yokogawa. - 2014.: TI 12B00A20-01R.

Abstract: Измерения pH и ОВП относятся к наиболее распространенным в промышленности, но их точность и правильная интерпретация не всегда бывают однозначны. Без учёта определённых факторов результаты могут оказаться ошибочными. Целью настоящего издания является стремление помочь лучше понять сам метод измерения pH/ОВП и природу факторов, оказывающих негативное влияние на точность результатов. Здесь вы сможете найти основные сведения о принципах измерения pH/ОВП, о конструкции чувствительных элементов и примеры использования рН-метрических систем в различных процессах. Для получения точных и надёжных измерений pH/ОВП требуется надлежащее техническое обслуживание и соблюдение особых условий хранения. Немаловажным является постоянная диагностика всех частей системы, а также предотвращение распространённых ошибок при эксплуатации рН анализаторов. В настоящем руководстве описано, как избежать и как обнаружить различные негативные явления.
Кроме того, в конце пособия приведен раздел с часто задаваемыми вопросами и ответами, а также приложения, в которых представлены таблица химической совместимости материалов и форма опросного листа для оформления запроса. Надеемся, что эта книга поможет вам в работе!

Main Figures:







Центральный офис
2 Dart Road, Newnan, Ga. 30265, U.S.A. (США)
Телефон: 1-770-253-7000
Факс: 1-770-254-0928
Торговые филиалы
Чэгрии-Фоллс, Элк-Гроув-Виллидж, Санта-Фе-Спрингс, Хоуп-Вэлли, Колорадо, Хьюстон, Сан Хосе
Центральный офис
Databankweg 20, Amersfoort 3812 AL, THE NETHERLANDS (Нидерланды)
Телефон: 31-334-64-1611 Факс 31-334-64-1610
Торговые филиалы
Маарсен (Нидерланды), Вена (Австрия), Завентем (Бельгия), Ратинген (Германия), Мадрид (Испания),
Братислава (Словакия), Ранкорн (Соединенное Королевство), Милан (Италия).
Praca Acapuico, 31 - Santo Amaro, Sao Paulo/SP - BRAZIL (Бразилия)
Телефон: 55-11-5681-2400 Факс 55-11-5681-4434
Центральный офис
5 Bedok South Road, 469270 Singapore, SINGAPORE (Сингапур)
Телефон: 65-6241-9933 Факс 65-6241-2606
Центральный офис
395-70, Shindaebang-dong, Dongjak-ku, Seoul, 156-714 KOREA (Южная Корея)
Телефон: 82-2-3284-3016 Факс 82-2-3284-3016
Центральный офис (Сидней)
Centrecourt D1, 25-27 Paul Street North, North Ryde, N.S.W.2113, AUSTRALIA (Австралия)
Телефон: 61-2-9805-0699 Факс: 61-2-9888-1844
Центральный офис
40/4 Lavelle Road, Bangalore 560 001, INDIA (Индия)
Телефон: 91-80-2271513 Факс: 91-80-2274270
Центральный офис
Грохольский пер.13, строение 2, 129090 Москва, РОССИЯ
Телефон: (+7 495) 933-8590, 737-7868, 737-7871
Факс (+7 495) 933- 8549, 737-7869
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Mon Oct 01, 2018 4:12 pm

18. Катин О.И. О системе автоматического контроля pH жидкости // Международный студенческий научный вестник / X Международная студенческая научная конференция – Москва: Академия Естествознания, 2017.

Abstract: В системах гидропоники вопрос контроля кислотности водной среды можно назвать одним из самых значимых, так как успешное и продуктивное выращивание урожая напрямую зависит от параметров жидкости для полива. Метод определения pH с помощью индикаторной бумаги обеспечивает меньшую точность измерения в сравнении с другими методами, но более экономичен и прост в эксплуатации.[1,2] Для автоматизации данного метода может быть использован контроллер на базе платформы Arduino и датчик с RGB сенсором. Такая система измерения может быть снабжена специализированными модулями Wi-Fi или GPRS для обеспечения удаленного управления и мониторинга показаний.

Main Figures:

1. Нечипоренко А.П. Физико-химические (инструментальные) методы анализа.
Электрохимические методы. Потенциометрия и кондуктометрия: Учеб.-метод. пособие / Под
ред. В.В. Кириллова. – СПб.: НИУ ИТМО; ИХиБТ, 2013. – 34 с.

2. Бейтс Р. Определение рН. Теория и практика / пер. с англ. под ред.
акад. Б. П. Никольского и проф. М. М. Шульца. — 2 изд. — Л. : Химия, 1972.

3. TCS3200, TCS3210 Programmable color light-to-frequency converter - TAOS Inc.,
July 2009 – Режим доступа: ... stems.html

4. TCS3472 Color light-to-digital converter with IR filter - TAOS Inc., August 2012 –
Режим доступа:

5. Гонсалес Р., Вудс Р. Цифровая обработка изображений – Техносфера, 2012. -
1104 с. - ISBN 9785948363318.

6. Петин В.А. Проекты с использованием контроллера Arduino. — БХВ-
Петербург, 2014. — 400 с. — ISBN 9785977533379.
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Tue Oct 02, 2018 12:59 pm

19. Romanenko S., Radenkov T., Newsky E.and Kagirov A. Differential sensor for pH monitoring of environmental objects // MATEC Web of Conferences. – 2016. V.79. DOI: 10.1051/matecconf/20167901008.

Abstract: Differential pH sensor is proposed. Reference electrode and measuring electrode are the same type. Reference electrode is immersed in standard buffer solution with known pH value. The differential pH sensor has longer service life as compared with the traditionally used sensors with silver chloride reference electrode. Ultrasonic cleaning system is proposed to clean the primary measuring transducer from pollution that form as result of silting during long-term operation with the sensor.

Main Figures:



[1] P. Jaikang, K. Grudpan, T. Kanyanee, Talanta 132, 884 (2015)
doi: 10.1016/j.talanta.2014.10.046

[2] A. Kagirov, S. Romanenko, Testing. Diagnostics (Sp), 157 (2011)

[3] S.H.A. Hassan, S.W. Van Ginkel, M.A.M. Hussein, R. Abskharon, S.-E. Oh,
Environment International 92–93, 106 (2016) doi: 10.1016/j.envint.2016.03.003

[4] A. Kagirov, D. Kalashnikova, Testing. Diagnostics (13), 73 (2014)

[5] B.S. Echols , R.J. Currie, D.S. Cherry, J.R. Voshell, Environmental Monitoring and
Assessment 185, 1341 (2013) doi: 10.1007/s10661-012-2636-7

[6] C. Manjarrés, D. Garizado, M. Obregon, N. Socarras, M. Calle, C. Jimenez-
Jorquera, Journal of Applied Research and Technology 14, 1 (2016)
doi: 10.1016/j.jart.2016.01.003

[7] T. Radenkov, S. Romanenko, A. Kagirov, Testing. Diagnostics (Sp), 146 (2011)

[8] A. Kulasekaran, G. Andal, R. Lakshimipathy, J. John Alexander, International
Journal of ChemTech Research 8, 16 (2015)

[9] F. Scholz, T. Steinhardt, H. Kahlert, J. Behnert, Electroanalysis 16, 2058 (2004)
doi: 10.1002/elan.200403059

[10] J. Plambeck, Electroanalytical chemistry: basic principles and applications (Wiley,
New York, 1982)

[11] M. Sander, T.B. Hofstetter, C.A. Gorski, Environmental Science and Technology
49, 5862 (2015) doi: 10.1021/acs.est.5b00006

[12] I.M. Perez De Vargas Sansalvador, C.D. Fay, J. Cleary, A.M. Nightingale,
M.C. Mowlem, , D. Diamond, Sensors and Actuators, B: Chemical 225, 369 (2016)
doi: 10.1016/j.snb.2015.11.057

[13] M. Schirrmann, R. Gebbers, E. Kramer, J. Seidel, Sensors 11, 573 (2011)
doi: 10.3390/s110100573

[14] A. Mroz, M. Borchardt, C. Diekmann, K. Cammann, M. Knoll, C. Dumschat,
Analyst 123, 1373 (1998) doi: 10.1039/a708992i

[15] P. Spitzer, B. Werner, Analytical and Bioanalytical Chemistry 374, 787 (2002)
doi: 10.1007/s00216-002-1453-1

[16] Yi Hu, Shu Wang, Ming Zhu, MATEC Web of Conferences 59, 01006 (2016)
doi: 10.1051/matecconf/20165901006

[17] Y.-S. Li, L.-C. Shi, X.-F. Gao, J.-G. Huang, Desalination 390, 62 (2016)
doi: 10.1016/j.desal.2016.04.008
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Fri Oct 05, 2018 10:26 am

20. Caflisch C. R., Pucacco L. R., and Carter N. W. Manufacture and utilization of antimony pH electrodes // Kidney International. – 1978. Vol.14. P.126—141.

Abstract: A new technique for manufacturing single-barreled and double-barreled antimony pH microelectrodes is described. The results of investigations into the accuracy of antimony as a pH sensor disclosed that the pH-voltage response is: 1) within the physiologic range, principally the result of the hydrogen ion activity of the solution in which the voltage is being developed, 2) in part, qualitatively anion-dependent, 3) modified by the presence of significant amounts of at least carbon dioxide, oxygen, and nitrogen gases, and 4) markedly offset by fluctuations in temperature. Our results further indicate that the accuracy of antimony as a pH sensor is determined by the quality of the calibration procedure. We conelude that if the antimony electrode is to accurately determine the pH of a biological fluid, the pH calibration solutions must closely resemble the unknown biological fluid with respect to temperature, P02, PN2, and types of buffering anions. A calibration procedure is described which can minimize errors with antimony pH stimations when measuring the pH of proximal tubular fluid of the mammalian kidney.

Main Figures:



I. CARTER NW, RECTOR FC, CAMPION DS, SELDIN DW: Measurement of intracellular pH of skeletal muscle with pHsensitive glass microelectrodes. J Clin Invest 46:920—933, 1976

2. CALDWELL PC: An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrodes. J Physiol 126:169—180, 1954

3. CALDWELL PC: Studies on the internal pH of large muscle and nerve fibers. J Physiol 142:22—62. 1958

4. CARTER NW: The production and testing of double-barreled pH glass microelectrodes for the measurement of intratubular pH. YalefBiol Med 45:349—355, 1972

5. PUCACCO LR, CARTER NW: A glass membrane pH microelectrode. Anal Biochem 73:501—512, 1976

6. FRANK K, FUORTE5 MGF: Potentials recorded from the spinal cord with microelectrodes. J Physiol 130:625—654, 1955

7. GREEN R, GIEaIscu 0: Some problems with antimony microelectrodes, in Ion-Selective Microelectrodes, edited by BERMAN I-li, HEBERT NC, New York, Plenum Press, 1974, pp. 43—53

8. PAULING L: A molecular theory of general anesthesia. Science 134:15—21, 1961

9. KURELLA GA: Metal microelectrodes for pH determination in ion Selective Microelectrodes, edited by HEBERT NC, KI-iuRI RH, New York, Dekker, in press

10. VILIRA FL, MALNIC G: Hydrogen ion secretion by rat cortical tubules as studied by an antimony microelectrode. Am J Physiol 214:710—718, 1968

11. GATTY 0, SPOONER ECR: The Electrode Potential Behaviour of Corroding Metals in Aqueous Solutions, New York, Oxford University Press, 1938, pp. 332—367

12. PERLEY GA: Characteristics of the antimony electrode. md EngChemAnalEd 11:319—322. 1939

13. STOCK iT, PURDY WC, GARCIA LM: The antimony-antimony oxide electrode. Chem Rev 58:611—626. 1958
14. ROBERTS EJ, FENWECK F: The antimony-antimony trioxide electrode and its use as a measure of acidity. JAm Chem Soc 50:2125—2147. 19284. CARTER NW: The production and testing of double-barreled pH glass microelectrodes for the measurement of intratubular pH. YalefBiol Med 45:349—355, 1972

IS. TOURKEY AR, MousA AA: Studies on some metal electrodes. J Chem Soc 752—763, 1948

16. MALNIC G, VIEIRA FL: The antimony microelectrode in kidney micropuncture. Yale J Biol Med 45:356—367, 1972

17. SoLoMoN 5, ALPERT H: A method for determining titratable acidity in nanoliter samples of biological fluids. Anal Biochem 32:291—296, 1969

18. KARLMARK B: An ultramicro method for the separate titration of hydrogen and ammonium ions. Pfiuegers Arch 323:361— 365, 1971

19. KARLMARK B: The determination of titratable acid and ammonium ions in picomole amounts. Anal Biochem 52:69—82,1973

20. BICHER HI, OHKI S: Intracellular pH electrode experiments on the giant squid axon. Biochem Biophys Acta 255:901—904, 1972

21. KURELLA GA, Popov GA: Determination of pH by means of the antimony micro-electrode. Biofizika 5:373—375, 1960

22. V0R0BIEv LN, KURELLA GA, PoPov GA: Intracellular pH of Nitella flexillis at rest and after excitation. Biofizika 6:582— 589, 1961

23. PUSCHETI- JB, ZURBACH PE: Re-evaluation of microelectrode methodology for the in vitro determination of pH and bicarbonate concentration. Kidney mt 6:81—91, 1974

24. KARLMARK B, SOHTELL M: The determination of bicarbonate in nanoliter samples. Anal Biochem 53:1—Il, 1973
25. BoDFoRss 5, H0LMQvI5T A: Die antimonelektrode. Zeitschr, ft fuer Physikalische Chemie A 161:61—68, 1932

26. QUEHENBERGER P: The influence of carbon dioxide, bicarbonate and other buffers on the potential of antimony microelectrodes. Pfluegers Arch 368:141—147,1977

<< Предыдущая страница
Site Admin
Posts: 203
Joined: Wed Sep 20, 2017 9:55 am


Return to Литература по теме


User Menu