It is currently Fri Aug 23, 2019 9:17 pm

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга

Фотометрия / спектрофотометрия

Подборка научных статей

by Admin » Wed Aug 07, 2019 3:11 pm


В данном разделе будут выкладываться научные статьи, посвященные спектрофотометрическому методу анализа, а также новым приборам и разработкам для спектрофотометрии.
Admin
Site Admin
 
Posts: 229
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Wed Aug 07, 2019 3:37 pm


Abstract: Разработан прибор для измерения спектров отражения. Прибор построен на основе микроконтроллера ATtiny24, оснащенного шестью светодиодами с длинами волн 390, 470, 520, 565, 590, 655 нм и однокристальным фотоприемником OPT-101. Микроконтроллер последовательно зажигает и гасит светодиоды, измеряя отраженный сигнал от образца. Калибровка прибора (100% отражения) производится по листу белой бумаги.

Main Figures:
Image
Прибор для измерения спектров отражения

Image


OPT101 Monolithic Photodiode and Single-Supply Transimpedance Amplifier

References
[1] Бураков В. С. Практическое руководство по спектральному
анализу / В. С. Бураков, А. А. Янковский. – Минск. :АН БССР, 1960. – 236.
[2] Дробышев А. И. Основы атомного спектрального анализа / А. И.
Дробышев. – С.-Петерб. Ун-та, 2000. - 198с.
[3] Зайдель А. Н. Основы спектрального анализа / А. Н. Зайдель. –
М. : Наука, 1965. – 322 с.
[4] Зайдель А. Н. Таблицы спектральных линий / А. Н. Зайдель, В. К.
Прокофьев, С. М. Райский, Е. Я. Шрейдер. – М. :Физматлит, 1962. – 607 с.
[5] Ландсберг Г. С. Оптика, 6-е изд., стереот. / Г. С. Ландсберг. – М. :
Физматлит, 2003. – 848 с.
[6] Лебедева В. В. Техника оптической спектроскопии / В. В.
Лебедева. – М. : изд-во МГУ, 1977. – 372 с.
[7] Митричев В. С. Основы криминалистического исследования
материалов, веществ и изделий из них / В. С. Митричев, В. Н. Хрусталев. –
СПб. : Питер, 2003. – 591 с.
[8] Паспорт СЛ – 13: паспорт
[9] Пономарев А. Н. Химический и спектральный анализ в
металлургии / А. Н. Пономарев. – М. : «Наука», 1965. – 383 с.
[10] Свентицкий Н. С. Визуальные методы спектрального анализа / Н.
С. Светницкий. – М. : 1961. – 314 с.
[11] Сухенко К. А. Спектральный анализ сталей и сплавов / К. А.
Сухенко – М. : Оборонгиз, 1954.
[12] Тарасов К. И. Спектральные приборы / К. И. Тарасов. – Л.:
Машиностроение, 1968. – 388 с.
[13] Терек Т. Эмиссионный спектральный анализ / Т. Терек, Й. Мика,
Э. Гегуш. – М. : Мир, 1982. – 455 с.
[14] Методы атомно-эмиссионной спектроскопии [электронный
ресурс] URL:http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/03_ana
liticheskaya_khimiya_chast_II/5030 (дата обращения 11.02.2017)
[15] Медицинская энциклопедия [электронный ресурс]:
http://www.medical-enc.ru/ (дата обращения 10.05.17)
[16] В. Шеленберг Принципы работы и устройство приемников света
на ПЗС [электронный ресурс] URL: http://www.startcopy.net/notes/ccd.shtml
(дата обращения 18.04.2017)
[17] О. Шенцова сравнительный спектральный анализ в
криминалистической экспертизе на стилоскопе сл-13 с фотоэлектрической
приставкой [электронный ресурс]
http://www.proexpertizu.ru/general_questions/661/ ( дата обращения 17.02.2017)
Admin
Site Admin
 
Posts: 229
Joined: Wed Sep 20, 2017 9:55 am

by Admin » Thu Aug 08, 2019 4:22 pm

2. Junjie Ma , Fansheng Meng , Yuexi Zhou Yeyao Wang, Ping Shi. DistributedWater Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks // Sensors 2018, 18, 606.

Abstract: Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.


Main Figures:
Image
Image
Image
Image


References
1. Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution
sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.
Sci. Total Environ. 2016, 566, 1552–1567. [CrossRef] [PubMed]
2. Zhao, Y.; Xia, X.H.; Yang, Z.F. Assessment of water quality in Baiyangdian Lake using multivariate statistical
techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [CrossRef]
3. Kim, C.; Eom, J.B.; Jung, S.; Ji, T. Detection of organic compounds in water by an optical absorbance method.
Sensors 2016, 16, 61. [CrossRef] [PubMed]
4. Xu, L.; Luo, Y. A new technology for water quality monitoring based on UV-visible spectrum analysis.
Spectrosc. Spectr. Anal. 2014, 34, 443–444.
5. Cao, H.; Qu, W.; Yang, X.; Jia, S.; Wang, C.; Lu, C. Research on rapid determination of organic matter
concentration in aquaculture water based on UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3015–3019.
6. Kus, M.; Ribbens, S.; Meynen, V.; Cool, P. Microvolume TOC analysis as useful tool in the evaluation of lab
scale photocatalytic processes. Catalysts 2013, 3, 74–87. [CrossRef]
7. Zhao, Y.; Li, Y.; Zhen, Y.; Fang, Y. A novel monitoring system for COD using optical ultraviolet absorption
method. Procedia Environ. Sci. 2011, 10, 2348–2353.
8. Tang, B.; Zhao, J.;Wei, B.; Jiang, S.; Luo, J. A method of optimizing the prediction model for the determination
of water COD by using UV-visible spectroscopy. China Environ. Sci. 2015, 35, 478–483.
9. Tang, B.; Wei, B.; Wu, D.; Mi, D.; Zhao, J.; Feng, P.; Jiang, S.; Mao, B. Experimental research of turbidity
influence on water quality monitoring of COD in UV-visible spectroscopy. Spectrosc. Spectr. Anal. 2014, 34,
3020–3024.
10. Wu, D.;Wei, B.; Feng, P.; Tang, B.; Liu, J. Denoising algorithm of UV-visible spectroscopy on water quality
detection based on two-dimension restructuring and dynamic pane. Spectrosc. Spectr. Anal. 2016, 36,
1044–1050.
11. Tang, B.;Wei, B.; Mao, B.; Zhao, J.; Feng, P. Noise analysis and denoising research on the UV-visible absorption
spectroscopy water quality detection system. Laser Optoelectron. Prog. 2014, 51, 197–203. [CrossRef]
12. Tang, G.; Wei, B.; Wu, D.; Feng, P.; He, P.; Liu, J.; Chen, M. Research on compression and reconstruction
algorithm of spectral data in water quality monitoring. Environ. Sci. Technol. 2016, 39, 6–10.
13. Wang, X.; Ma, J.;Wang, S.; Bi, D. Cluster-based dynamic energy management for collaborative target tracking
in wireless sensor networks. Sensors 2007, 7, 1193–1215. [CrossRef]
14. Wang, X.; Ma, J.; Wang, S. Parallel energy-efficient coverage optimization with maximum entropy clustering
in wireless sensor networks. J. Parallel Distrib. Comput. 2009, 69, 838–847. [CrossRef]
15. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantitative online analysis of
environmental trace heavy metals with total-reflection X-ray fluorescence. Sensors 2015, 15, 10650–10675.
[CrossRef] [PubMed]
16. Hou, D.; Zhang, J.; Chen, L.; Huang, P.; Zhang, G. Water quality analysis by UV-visible spectroscopy:
A review of methodology and application. Spectrosc. Spectr. Anal. 2013, 33, 1839–1844.
17. Zhao, Y.; Li, Y.; Guo, Y.; Gu, B.; Yang, Z. A novel technology for water quality testing based on UV spectral
analysis. Spectrosc. Spectr. Anal. 2012, 32, 1301–1305.
18. Liu, X.; Zhang, H. Rapid determination of COD in aquaculture water based on LSSVM with UV-visible
spectroscopy. Spectrosc. Spectr. Anal. 2014, 34, 2804–2807.
19. Wang, X.;Wang, S.; Ma, J. An improved particle filter for target tracking in sensor systems. Sensors 2007, 7,
144–156. [CrossRef]
Sensors 2018, 18, 606 19 of 19
20. Wang, X.; Ma, J.; Ding, L.; Bi, D. Robust forecasting for energy efficiency of wireless multimedia sensor
networks. Sensors 2007, 7, 2779–2807. [CrossRef] [PubMed]
21. Wang, X.; Ma, J.; Wang, S.; Bi, D. Time series forecasting energy-efficient organization of wireless sensor
networks. Sensors 2007, 7, 1766–1792. [CrossRef] [PubMed]
22. Taormina, R.; Chau, K.W.; Sivakumar, B. Neural network river forecasting through baseflow separation and
binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [CrossRef]
23. Gholami, V.; Chau, K.W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations
using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [CrossRef]
24. Wang,W.C.; Xu, D.M.; Chau, K.W.; Chen, S. Improved annual rainfall-runoff forecasting using PSO–SVM
model based on EEMD. J. Hydroinform. 2013, 15, 1377–1390. [CrossRef]
25. Zhang, S.; Chau, K.W. Dimension reduction using semi-supervised locally linear embedding for plant leaf
classification. In Emerging Intelligent Computing Technology and Applications; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 948–955.
26. Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks
coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [CrossRef]
27. Chau, K.W.; Wu, C.L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction.
J. Hydroinform. 2010, 12, 458–473. [CrossRef]
28. Ma, J.; Wang, Y.; Yang, Q.; Liu, Y.; Shi, P. Intelligent simultaneous quantification of environmental trace
elements with total reflection X-ray fluorescence. In Proceedings of the IEEE 15th International Conference
on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015; pp. 1580–1586.
29. Wang, X.; Ma, J.; Wang, S.; Bi, D. Distributed particle swarm optimization and simulated annealing for
energy-efficient coverage in wireless sensor networks. Sensors 2007, 7, 628–648. [CrossRef]
30. Wang, X.; Ma, J.;Wang, S. Distributed energy optimization for target tracking in wireless sensor networks.
IEEE Trans. Mobile Comput. 2009, 9, 73–86. [CrossRef]
31. Wang, C.; Wu, F.; Zhao, H.; Lu, S. Temporal information entropy and its application in the detection of
spatio-temporal changes in vegetation coverage based on remote sensing images. Acta Ecol. Sin. 2017, 37,
7359–7367.
32. Al-Omari, A.I. Estimation of entropy using random sampling. J. Comput. Appl. Math. 2014, 261, 95–102.
[CrossRef]
33. Yentes, J.M.; Hunt, N.; Schmid, K.K. The appropriate use of approximate entropy and sample entropy with
short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [CrossRef] [PubMed]
Admin
Site Admin
 
Posts: 229
Joined: Wed Sep 20, 2017 9:55 am


Return to Литература по теме

cron

User Menu

Login