It is currently Mon Apr 06, 2020 6:17 pm

НИЛ АСЭМ Научно - исследовательская лаборатория автоматизированных систем экологического мониторинга


  • Username:


    Password:


    Remember me


  •  Пользователи
  • In total there are 4 users online :: 1 registered, 0 hidden and 3 guests

    Registered users: Google [Bot]


  •  VIP
  • Image
    Image
    Image
    Image

  • Разработки лаборатории

РЕГИСТРИРУЮЩИЙ pH – метр типа “CPH-01”


Image


Назначение

Компьютерный рН-метр CPH – 01 предназначен для проведения высокоточных стационарных и кинетических измерений величины рН раствора в лабораторных условиях под контролем компьютера. Использование прибора вместе с портативным компьютером позволяет применить его в полевых условиях.


Область применения
- научные исследования (рН-метр обеспечивает комфортное прецизионное измерение в лабораторных и полевых условиях величин рН, как в стационарном, так и в кинетическом режимах, что позволяет использовать его для проведения самых разнообразных научно-исследовательских работ в области химии, биохимии, биофизики, микробиологии и смежных областях),
- медицинская и фармацевтическая промышленность (контроль pH при производстве и хранении медицинских препаратов и сырья для их производства),
- контроль величин pH в экологическом мониторинге,
- контроль и регистрация величин pH в различных технологических процессах и т.п.

Функциональные возможности
- измерение и регистрация величи [...]

Views: 10332  •  Comments: 0  •  Post a reply [ Read all ]

USB - pH – метр регистратор типа “CPH-02”


Image


Назначение

Компьютерный USB-рН-метр регистратор CPH – 02 предназначен для проведения высокоточных стационарных и полевых измерений величины рН раствора самостоятельно или под контролем компьютера. В режиме регистратора-самописца прибор работает только совместно с компьютером. Использование прибора вместе с портативным компьютером позволяет применить его в полевых условиях в качестве регистратора.


Область применения
- научные исследования (рН-метр обеспечивает комфортное прецизионное измерение в лабораторных и полевых условиях величин рН, как в стационарном, так и в кинетическом режимах, что позволяет использовать его для проведения самых разнообразных научно-исследовательских работ в области химии, биохимии, биофизики, микробиологии и смежных областях),
- медицинская и фармацевтическая промышленность (контроль pH при производстве и хранении медицинских препаратов и сырья для их производства),
- контроль величин pH в экологическом мониторинге,
- контроль и регистрация величи [...]

Views: 9501  •  Comments: 0  •  Post a reply [ Read all ]


  • Последние новости

Управление несколькими устройствами по шинам SPI / I2C


Image

Трехпроводной интерфейс

В трехпроводных интерфейсах используется линия выбора кристалла (CS или SS с активным низким уровнем), линия синхронизации (SCLK) и линия ввода данных или главная линия вывода (называется DIN или MOSI). Поскольку эти интерфейсы содержат также линию вывода данных или главную линию ввода (называется DOUT или MISO), их иногда называют четырехпроводными интерфейсами. Для простоты в данной статье трех- и четырехпроводные интерфейсы называются трехпроводными.

Трехпроводные интерфейсы работают на более высоких тактовых частотах и не требуют нагрузочных резисторов. Интерфейсы SPI/QSPI и MICROWIRE также обеспечивают полнодуплексный режим работы (данные могут одновременно передаваться и приниматься), и они более устойчивы к шумам. В трехпроводных интерфейсах синхронизация производится по фронту, а не по уровню. Основной недостаток трехпроводного интерфейса — необходимость в отдельной линии CS с активным низким уровнем для каждого ведомого устройства на шине, если только ведомые устройства не подключены по шлейфовой схеме, как показано на рис. 1. (Шлейфовая схема подключения более подробно обсуждается ниже.) Трехпроводной интерфейс также не предусматривает подтверждения правильной передачи или приема данных. С точки зрения программирования трехпроводные интерфейсы проще и эффективнее двухпроводных при работе с одним ведущим и одним ведомым устройствами.

Image

Интерфейс SPI разработан компанией Motorola, схемы с интерфейсом SPI требуют двух линий управления (CS с активным низким уровнем и SCLK) и двух линий данных (DIN/SDI и DOUT/SDO). В стандартах SPI/QSPI компании Motorola линия данных DIN/SDI называется MOSI (master-out, slave-in — выход ведущего, вход ведомого), линия DOUT/SDO — MISO (master-in, slave-out — вход ведущего, выход ведомого), а линия CS с активным низким уровнем — SS (slave-select — выбор ведомого). Для простоты и ясности в настоящей статье линии данных трехпроводного интерфейса будут рассматриваться с точки зрения ведомого устройства: DIN — это вход данных ведомого устройства, а DOUT — выход данных ведомого устройства. В большинстве интерфейсов SPI имеется два конфигурационных бита, определяющих момент выборки данных ведомым устройством — CPOL (полярность сигнала синхронизации) и CPHA (фаза сигнала синхронизации). Бит CPOL определяет состояние сигнала SCLK в режиме холостого хода (отсутствие переключения) — высокий уровень (CPOL = 1) или низкий уровень (CPOL = 0). Бит CPHA определяет, по какому фронту сигнала SCLK происходит сдвиг данных в том и другом направлении. Если CPOL = 0, то при CPHA = 0 данные будут сдвигаться на ведомое устройство по положительному фронту сигнала SCLK. При CPHA = 1 данные будут сдвигаться на ведомое устройство по отрицательному фронту сигнала SCLK. Два состояния битов CPOL и CPHA дают четыре возможных сочетания полярности и фазы сигнала синхронизации; каждое сочетание несовместимо с остальными тремя. Для успешного обмена данными между ведущим и ведомым устройствами на каждом из них должны быть установлены одинаковые значения CPOL и CPHA. В простейшей форме интерфейс SPI передает за один прием восемь битов данных (один байт), хотя некоторые микроконтроллеры передают за один прием два или более байта. Например, некоторые микроконтроллеры способны передавать за один прием 8 или 16 битов. При CPOL = 0 и CPHA = 0 переход от высокого уровня к низкому на линии CS с активным низким уровнем запускает передачу данных с ведущего устройства на ведомое. Сигнал на линии CS должен удерживаться на низком уровне, пока уровень сигнала SCLK будет меняться от низкого к высокому в течение восьми полных тактов. Данные DIN сдвигаются по положительному фронту сигнала SCLK. Байт данных загружается в ведомое устройство после того, как сигнал на линии CS с активным низким уровнем перейдет от низкого уровня к высокому. Данные будут доступны на линии DOUT ведомого устройства по отрицательному фронту сигнала SCLK на протяжении того же цикла из восьми битов.

Image

На рис. 2a приведена временная диаграмма работы трехпроводного интерфейса SPI при CPHA = 1 и CPOL = 1. Потактовая передача данных на периферийное устройство производится по положительному фронту сигнала синхронизации, а с ведомого устройства — по отрицательному фронту. На рис. 2б приведена временная диаграмма работы трехпроводного интерфейса SPI при CPHA = 0 и CPOL = 1. Потактовая передача данных на периферийное устройство производится по отрицательному фронту сигнала синхронизации, а с ведомого устройства — по положительному фронту. Линия шины CS с активным низким уровнем используется в качестве разрешающего сигнала для каждого ведомого устройства, поскольку каждой ИС на шине требуется собственная линия выбора кристалла. Если к одной шине подключено четыре ведомых устройства, для выбора соответствующего ведомого устройства необходимо четыре линии выбора кристалла. Если на линии CS с активным низким уровнем присутствует высокий (неактивный) уровень, ведомое устройство игнорирует фронты сигнала SCLK и удерживает линию DOUT в состоянии с высоким импедансом.Некоторые периферийные устройства с трехпроводным интерфейсом можно программировать методом, который носит название шлейфового подключения. Вместо того чтобы подключать по одной линии CS с активным низким уровнем на каждое периферийное устройство, при шлейфовом подключении можно использовать одну линию CS с активным низким уровнем и линию SCLK для управления несколькими последовательно соединенными периферийными устройствами. Для такого шлейфового подключения периферийных устройств в трехпроводном интерфейсе должна быть линия DOUT.Как показано на рис. 1, линия DOUT периферийного устройства № 1 служит линией DIN для периферийного устройства № 2 и т. д.В стандарте SPI не нормирована максимальная скорость передачи данных. Вместо этого периферийные устройства сами задают максимальную скорость передачи данных, которая в большинстве случаев имеет порядок 1 Мбит/с. Микроконтроллеры способны работать в широком диапазоне скоростей передачи данных интерфейса SPI. Однако при прямой связи по шине SPI ведомое устройство не может принудить ведущее к снижению скорости передачи данных или подтвердить успешную передачу данных. Стандарт QSPI почти идентичен SPI. Фактически периферийные устройства не могут отличить шину QSPI от шины SPI. В отличие от ведущих устройств с интерфейсом SPI, ведущие устройства с интерфейсом QSPI позволяют осуществлять передачу данных с программным выбором кристалла. Более того, ведущие устройства с интерфейсом QSPI могут передавать за один прием от 8 до 16 битов, а устройства с интерфейсом SPI обычно передают всего 8 битов. Устройства QSPI можно настроить для последовательной передачи до 16 слов данных (максимум 256 битов). Такой передачей целиком управляет интерфейс QSPI, и вмешательства микроконтроллера не требуется. Подобно SPI, стандарт QSPI не нормирует максимальную скорость передачи данных.


Двухпроводной интерфейс

В двухпроводных интерфейсах используется только линия данных (SDA или SMBDATA) и линия синхронизации (SCL или MBCLK).Меньшее на одну или две количество линий — особенно актуальное преимущество для компактных устройств, таких как мобильные телефоны и волоконно-оптические системы. Двухпроводные интерфейсы также позволяют подключать множество ведомых устройств к одной шине без необходимости использования сигналов выбора кристалла. Это возможно благодаря тому, что каждое устройство имеет уникальный адрес. Двухпроводные интерфейсы также предусматривают передачу бита подтверждения после успешного чтения. Поскольку в двухпроводных интерфейсах имеется только одна линия данных, они способны работать только в полудуплексном режиме (в заданном такте возможны только передача или только прием данных, но не то и другое вместе). В двухпроводных интерфейсах синхронизация производится по уровню, что может создавать проблемы в условиях сильных шумов при неправильном определении бита данных. Ведущее и ведомое устройства обмениваются данными по нескольким линиям шины последовательного интерфейса. В ходе цикла записи ведущее устройство использует собственные сигналы синхронизации и данных для передачи данных на ведущее устройство. В ходе цикла чтения ведомое устройство передает данные на ведущее.

Интерфейс I2C

Стандарт I2C, разработанный компанией Philips, предусматривает связь в полудуплексном режиме по одной линии данных (SDA) и одной линии управления (SCL). Стандарт I2C определяет простой двунаправленный интерфейс «ведущий–ведомый». В этой схеме микроконтроллер обозначает режим, в котором он будет работать — ведущий (режим передачи) или ведомый (режим приема). Каждое ведомое устройство имеет уникальный адрес, что позволяет ведущему устройству связываться с различными ведомыми устройствами по одной шине без использования сигналов выбора кристалла (рис. 3). Число ведомых устройств ограничено только максимально допустимой емкостью шины (400 пФ). В протоколе I2C используются 7- или 10-разрядные адреса, хотя 7-разрядные адреса более распространены. При 7-разрядном протоколе к шине можно подключать до 127 различных периферийных устройств. SCL и SDA — это линии с открытым стоком, для надлежащей работы которых необходимо, чтобы в режиме холостого хода на них был установлен высокий уровень. При работе от источника питания напряжением 3 В к этим линиям следует подсоединить нагрузочный резистор сопротивлением 1 кОм или выше, a при работе от источника питания напряжением 5 В — 1,6 кОм или выше.

Image

Обмен данными по интерфейсу I2C начинается с команды запуска, которая соответствует переходу линии SDA с высокого на низкий уровень при высоком уровне на линии SCL (рис. 4a). В двухпроводном интерфейсе для передачи данных между ведущим и ведомым устройствами используются команды запуска, повторного запуска и останова. За каждый такт SCL передается один бит данных; для передачи байта на ведомое устройство или с него необходимо передать как минимум девять битов. Цикл записи содержит восемь битов данных (рис. 4б), за которыми следует сигнал подтверждения (ACK) или отсутствия подтверждения (NACK). Двухпроводной интерфейс устанавливает низкий уровень на линии SDA, когда передача данных подтверждается. Когда данные передаются по шине I2C, они сдвигаются на ведомое устройство по положительному фронту сигнала SCL и считываются по отрицательному фронту сигнала SCL. Данные на линии SDA должны быть устойчивы, пока тактовый импульс SCL имеет высокий уровень.


Image

Передача завершается при поступлении команды останова или повторной команды запуска; в этот момент линия SDA переходит с низкого уровня на высокий при высоком уровне на линии SCL. Как SDA, так и SCL сохраняют высокий уровень, когда шина свободна. Цикл записи I2C начинается с команды запуска, за которой следует 7-разрядный адрес ведомого устройства и восьмой бит, указывающий на команду записи или чтения. Для передачи команды записи установите низкий уровень в восьмом бите, для передачи команды чтения — высокий. Ведущее устройство освобождает линию шины после восьмого такта. На девятом такте ведомое устройство удерживает низкий уровень на линии SDA, если оно подтверждает правильную передачу данных. Если ведомое устройство не подтверждает правильность выполнения команды записи, оно освобождает линию SDA (которая затем удерживается на высоком уровне нагрузочным резистором). После этого ведущее устройство записывает 8-битный командный байт, за которым следует второй бит ACK/NACK. Далее ведущее устройство записывает 8-битный байт данных, за которым следует третий бит ACK/NACK. Конечный бит подтверждения байта данных завершает цикл чтения-записи, и выходы периферийного устройства обновляются. На рис. 5a показан пример цикла записи. Цикл чтения I2C начинается с команды запуска, за которой следует адрес ведомого устройства с восьмым битом, обозначающим команду записи. После поступления бита ACK/NACK ведущее устройство записывает командный байт для доступа к новому регистру ведомого устройства. За вторым битом ACK/NACK ведущее устройство переписывает адрес ведомого устройства. Затем, после получения третьего бита ACK/NACK ведомое устройство берет на себя управление шиной и записывает восемь битов данных за один прием (рис. 5б). При чтении из того же регистра ведомого устройства, что и в предыдущих операциях чтения, ведущему устройству достаточно записать адрес ведомого устройства, прежде чем прочесть данные с этого ведомого устройства.

Image

В двухпроводном интерфейсе передача данных происходит по восемь бит за один прием (рис. 5). Интерфейс I2C поддерживает медленные (до 100 кбит/с), быстрые (до 400 кбит/с) и высокоскоростные (до 3,4 Мбит/с) протоколы. Интерфейс I2C распознает сигналы высокого и низкого уровня по уровням напряжения КМОП-логики: напряжение низкого уровня составляет менее 0,3 от напряжения питания; сигнал высокого уровня составляет более 0,7 от напряжения питания.


Литература

1. Указания по применению «Выбор последовательной шины» http://www.maxim-ic.com/an3967
2. Указания по применению «Последовательные цифровые сети данных» http://www.maxim-ic.com/an3438

Views: 7949  •  Comments: 0  •  Write comments [ Back ]

  • Статистика
Яндекс.Метрика Рейтинг@Mail.ru




  •  Календарь
  • << April 2020 >>
    Mo Tu We Th Fr Sa Su
    1 2 3 4 5
    6 7 8 9 10 11 12
    13 14 15 16 17 18 19
    20 21 22 23 24 25 26
    27 28 29 30


  •  Поисковые боты
  • Google [Bot]
    Mon Apr 06, 2020 6:13 pm

cron

User Menu

Login